For the first time, a synthetic route for preparing lupane and oleanane derivatives with a hydrogenated furan ring as a cycle A of triterpene scaffold is described. Most of the synthesized compounds, furanoterpenoids and their synthetic intermediates, were non-toxic against the tested cancer and non-cancerous cell lines, and evinced significant inhibitory activity with IC 1.0-9.0 μM in the tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibition test. Lupane derivatives - 1-oxime 7, 1,10-seco-hydroxynitrile 11 and furanoterpenoid 14 - were selected as those expected to be the most promising compounds. The results of molecular modeling evinced the strongest binding of compound 11 to the active site of Tdp1 compared to the reference drug. Simultaneously, only compound 11 at subtoxic concentration (10 μM) produced a synergetic effect on the topotecan activity against HeLa-V cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2024.116724 | DOI Listing |
Arch Pharm (Weinheim)
January 2025
N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation.
Tyrosyl DNA phosphodiesterases 1 and 2 (TDP1 and TDP2), which are enzymes involved in the repair of DNA, are regarded as promising targets for the development of new anticancer drugs. In this study, a series of imidazolidine-2,4-diones, 2,4,5-triones, and 2-thioxoimidazolidine-4,5-diones based on dehydroabietylamine (DHAAm) were synthesized. The inhibitory activity of the new compounds against TDP1 and TDP2, as well as their cytotoxic characteristics, were evaluated.
View Article and Find Full Text PDFBioorg Chem
January 2025
School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China. Electronic address:
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that plays a crucial role in repairing DNA lesions caused by the entrapment of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors exhibit synergistic effects with TOP1 inhibitors in cancer cells, effectively overcoming resistance to TOP1 inhibitors. Therefore, this approach presents a promising strategy for reversing tumor resistance to TOP1 inhibitors.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China.
Target deconvolution is essential for elucidating the molecular mechanisms, therapeutic efficacy, and off-target toxicity of small-molecule drugs. Thermal proteome profiling (TPP) is a robust and popular method for identifying drug-protein interactions. Nevertheless, classical implementation of TPP using isobaric labeling of peptides is tedious, time-consuming, and costly.
View Article and Find Full Text PDFMicroorganisms
November 2024
School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China.
Nitrogen-associated protein 50 (NAP50) is an abundant plastid protein with an unknown function identified in (Dinophyceae). No progress has been made in discovering the function of NAP50 since its first characterization in 2009. The present study is a continuation of work on the predicted function of NAP50.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 Acad. Lavrentjev Ave., 630090 Novosibirsk, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!