Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hypothesis: Soft materials, particularly elastomers, are extensively studied, but investigations into purely soft gel contact systems are limited due to their complex dual phases consisting of polymer and free liquids. While Dual Wavelength-Reflection Interference Confocal Microscopy (DW-RICM) is effective for noninvasively visualizing interfaces from a bottom view, it faces challenges in gel studies due to close refractive indices of polymeric networks and free liquids. We hypothesize that modulating the refractive index of soft gels using nanoparticles (NPs) enhances the visualization of contact zone beneath the free surface, providing insights into the configuration of phase-separated free oil within gel-on-gel contact systems.
Experiments: Gel-on-gel contact systems were fabricated using immiscible organogels and hydrogels. Titanium dioxide (TiO) NPs were introduced into the organogel to modulate refractive indices. Given the lack of prior studies on the hidden contact zone between gels, various techniques, including DW-RICM, side-view imaging, and inverted optical microscopy, were employed to observe and validate our findings. Comparative analyses were conducted with elastomer-on-rigid, elastomer-on-gel, and gel-on-rigid contact systems.
Findings: Our investigation demonstrated that a minimal amount of TiO NPs effectively delineates the direct contact radius between organogel polymeric networks and hydrogel surfaces. Comparative experiments showed that TiO addition did not alter the gels' mechanical and surface properties but significantly enhanced information on gel contact deformation. This enhanced visualization technique has the potential to advance our understanding of adhesive contacts in gels, providing valuable insights into interface phenomena involving biological soft tissues and cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.07.112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!