A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tackling heterogeneity in medical federated learning via aligning vision transformers. | LitMetric

Federated learning enables training models on distributed, privacy-sensitive medical imaging data. However, data heterogeneity across participating institutions leads to reduced model performance and fairness issues, especially for underrepresented datasets. To address these challenges, we propose leveraging the multi-head attention mechanism in Vision Transformers to align the representations of heterogeneous data across clients. By focusing on the attention mechanism as the alignment objective, our approach aims to improve both the accuracy and fairness of federated learning models in medical imaging applications. We evaluate our method on the IQ-OTH/NCCD Lung Cancer dataset, simulating various levels of data heterogeneity using Latent Dirichlet Allocation (LDA). Our results demonstrate that our approach achieves competitive performance compared to state-of-the-art federated learning methods across different heterogeneity levels and improves the performance of models for underrepresented clients, promoting fairness in the federated learning setting. These findings highlight the potential of leveraging the multi-head attention mechanism to address the challenges of data heterogeneity in medical federated learning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2024.102936DOI Listing

Publication Analysis

Top Keywords

federated learning
24
data heterogeneity
12
attention mechanism
12
heterogeneity medical
8
medical federated
8
vision transformers
8
medical imaging
8
address challenges
8
leveraging multi-head
8
multi-head attention
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!