Soft robots have morphological characteristics that make them preferred candidates, over their traditionally rigid counterparts, for executing physical interaction tasks with the environment. Therefore, equipping them with force sensing is essential for ensuring safety, enhancing their controllability, and adding autonomy. At the same time, it is necessary to preserve their inherent flexibility when integrating sensory units. Soft-fluidic actuators (SFAs) with hydraulic actuation address some of the challenges posed by the compressibility of pneumatic actuation while maintaining system compliance. This research further investigates the feasibility of utilizing the incompressible actuation fluid as the means of actuation and of multiaxial sensing. We have developed a hyperelastic model for the actuation pressure, acting as a baseline pressure. Any disparities from the baseline have been mapped to external forces, using the principle of pressure-based fluidic soft sensor. Computed tomography imaging has been used to examine inner deformation and validate the analytically derived actuation-pressure model. The induced stresses within the SFA are examined using COMSOL simulations, contributing to the development of a calibration algorithm, which accounts for geometric and cross-sectional nonlinearities and maps pressure variations with tip forces. Two force types (concentrated and distributed) acting on our SFA under different configurations are examined, using two experimental setups described as "Point Load" and "Distributed Force." The force sensing algorithm achieves high accuracy with a maximum absolute error of 0.32N for forces with a magnitude of up to 6N.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/soro.2023.0242 | DOI Listing |
J Control Release
January 2025
Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China. Electronic address:
Immune cells are sensitive to the perception of mechanical stimuli in the tumor microenvironment. Changes in biophysical cues within tumor tissue can alter the force-sensing mechanisms experienced by cells. Mechanical stimuli within the extracellular matrix are transformed into biochemical signals through mechanotransduction.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China. Electronic address:
Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.
View Article and Find Full Text PDFGait Posture
January 2025
Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway. Electronic address:
Background: Chronic ankle instability (CAI) has been associated with neuromuscular control dysfunction, particularly of the peroneal musculature.
Research Question: How do neuromuscular characteristics of the peroneal muscles, including corticospinal excitability, strength, proprioception (force sense) and electromyographic measures differ in individuals with CAI compared to healthy control counterparts aged 18-45?
Methods: A systematic review with meta-analysis was conducted by retrieving relevant articles from electronic databases including EBSCOhost (CINAHL Complete, AMED, SPORTDiscus), Ovid (MEDLINE, Embase), Web of Science, Scopus and Cochrane Library as well as Grey literature sources. The eligibility and methodological quality of the included case-control and cross-sectional studies were assessed by two reviewers.
Materials (Basel)
January 2025
Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China.
Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS).
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China.
MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read out the generated strain, thereby obtaining the targeted acoustic signal's information, such as its intensity, direction, and distribution. Due to their advantages in miniaturization, low power consumption, high precision, high consistency, high repeatability, high reliability, and ease of integration, MEMS acoustic sensors are widely applied in many areas, such as consumer electronics, industrial perception, military equipment, and health monitoring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!