In Situ-Grown Ultrathin Catalyst Layers for Improving both Proton Exchange Membrane Fuel Cell and Anion Exchange Membrane Fuel Cell Performances.

ACS Appl Mater Interfaces

State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Published: August 2024

The mass transport and ion conductivity in the catalyst layer are important for fuel cell performances. Here, we report an in situ-grown ultrathin catalyst layer (UTCL) to reduce the oxygen mass transport and a surface ionomer-coated gas diffusion layer method to reduce the ion conducting resistance. A significantly reduced catalyst layer thickness (ca. 1 μm) is achieved, and coupled with the ionomer introduction method, the ultrathin catalyst layer is in good contact with the membrane, resulting in high ion conductivity and high Pt utilization. This ultrathin catalyst layer is suitable for both proton exchange membrane fuel cells and anion exchange membrane fuel cells, giving peak power densities of 2.24 and 1.11 W cm, respectively, which represent an increase of more than 30% compared with the membrane electrode assembly (MEA) fabricated by using traditional Pt/C power catalysts. Electrochemical impedance spectra and limiting current tests demonstrate the reduced charge transfer, mass transfer, and ohmic resistances in the ultrathin catalyst layer membrane electrode assembly, resulting in the promoted fuel cell performances.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c10725DOI Listing

Publication Analysis

Top Keywords

catalyst layer
24
ultrathin catalyst
20
exchange membrane
16
membrane fuel
16
fuel cell
16
cell performances
12
situ-grown ultrathin
8
proton exchange
8
anion exchange
8
mass transport
8

Similar Publications

Controllable hydrogenation of carbonyl groups (C=O) is crucial for converting furfural into high-value furfuryl alcohol. Instead of traditional impregnation method, a novel Cu-based catalyst (Cu/SiO) is prepared using the ammonia evaporation method (AE) for the efficient hydrogenation of furfural to furfuryl alcohol under mild conditions. At the reaction conditions of 90 °C and 1 MPa H, the 5Cu/SiO-AE sample showed optimal performance with higher turnover frequency (36.

View Article and Find Full Text PDF

Bilayer TiO/Mo-BiVO Photoelectrocatalysts for Ibuprofen Degradation.

Materials (Basel)

January 2025

Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.

Heterojunction formation between BiVO nanomaterials and benchmark semiconductor photocatalysts has been keenly pursued as a promising approach to improve charge transport and charge separation via interfacial electron transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical pollutants. In this work, a heterostructured TiO/Mo-BiVO bilayer photoanode was fabricated by the deposition of a mesoporous TiO overlayer using the benchmark P25 titania catalyst on top of Mo-doped BiVO inverse opal films as the supporting layer, which intrinsically absorbs visible light below 490 nm, while offering improved charge transport. A porous P25/Mo-BiVO bilayer structure was produced from the densification of the inverse opal underlayer after post-thermal annealing, which was evaluated on photocurrent generation in aqueous electrolyte and the photoelectrocatalytic degradation of the refractory anti-inflammatory drug ibuprofen under back-side illumination by visible and UV-Vis light.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have attracted significant attention in the scientific community and in the industrial environment due to their unique structure and remarkable properties, including mechanical strength, thermal stability, electrical conductivity, and chemical inertness. Despite their potential, large-scale applications have been limited by challenges such as high production costs and catalyst contamination. In aerospace applications, CNTs have demonstrated considerable promise either in the form of thin layers or as reinforcements in polymer and metal matrices, where they enhance mechanical, thermal, and electromagnetic performance in lightweight composites.

View Article and Find Full Text PDF

Creating and maintaining a favorable microenvironment for electrocatalytic CO reduction reaction (eCORR) is challenging due to the vigorous interactions with both gas and electrolyte solution during the electrocatalysis. Herein, to boost the performance of eCORR, a unique synthetic method that deploys the in situ reduction of precoated precursors is developed to produce activated Ag nanoparticles (NPs) within the gas diffusion layer (GDL), where the thus-obtained Ag NPs-Skeleton can block direct contact between the active Ag sites and electrolyte. Specifically, compared to the conventional surface loading mode in the acidic media, our freestanding and binder free electrode can achieve obvious higher CO selectivity of 94%, CO production rate of 23.

View Article and Find Full Text PDF

Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!