Exploring the Transport Path of Oceanic Microplastics in the Atmosphere.

Environ Sci Technol

Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, Vienna 1010, Austria.

Published: August 2024

Microplastics (MP) have been recognized as an emerging atmospheric pollutant, yet uncertainties persist in their emissions and concentrations. With a bottom-up approach, we estimate 6-hourly MP fluxes at the ocean-atmosphere interface, using as an input the monthly ocean surface MP concentrations simulated by the global oceanic model (NEMO/PISCES-PLASTIC, Nucleus for European Modeling of the Ocean, Pelagic Interaction Scheme for Carbon and Ecosystem Studies), a size distribution estimate for the MP in the micrometer range, and a sea salt emission scheme. The atmospheric dispersion is then simulated with the Lagrangian model FLEXPART. We identify hotspot sources in the tropical regions and highlight the seasonal variability of emissions, atmospheric concentrations, and deposition fluxes both on land and ocean surfaces. Due to the variability of MP concentration during the year, the MP flux from the sea surface appears to follow a seasonality opposite to that of sea salt aerosol emissions. The comparison with existing observations of MP in the marine atmosphere suggests an underestimation of one to 2 orders of magnitude in our current knowledge of the MP in the oceans' surface. In addition, we show that the MP in the micrometer range is transported efficiently around the globe and can penetrate and linger in the stratosphere over time scales of months. The interaction of these particles with the chemistry and physics of the atmosphere is still mostly unknown and deserves to be further investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325545PMC
http://dx.doi.org/10.1021/acs.est.4c03216DOI Listing

Publication Analysis

Top Keywords

micrometer range
8
sea salt
8
exploring transport
4
transport path
4
path oceanic
4
oceanic microplastics
4
microplastics atmosphere
4
atmosphere microplastics
4
microplastics recognized
4
recognized emerging
4

Similar Publications

Hydrogen peroxide (HO)-based advanced oxidation technology has emerged as a cost-effective and green solution for tackling soil pollution. Given the highly heterogeneous nature of soil, the effectiveness of HO remediation is significantly influenced by its diffusion distance in soils. However, the dynamics of HO diffusion and its effective range remain largely unexplored, primarily due to the lack of analytical methods for mapping HO in soils.

View Article and Find Full Text PDF

Effect of ultrafine CO2 bubbles on Euglena gracilis Z growth with CO2 gas bubble size and chlorophyll content.

Biosci Biotechnol Biochem

December 2024

Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Central Ward, Hamamatsu, Shizuoka, Japan.

Microalgae have been explored as a viable alternative food source. Among them, Euglena gracilis stands out as a promising single-cell algae. However, the challenge lies in developing more efficient and cost-effective methods for industrial mass production of Euglena gracilis under controlled culture conditions.

View Article and Find Full Text PDF

Talbot effect based sensor measuring grating period change in subwavelength range.

Sci Rep

December 2024

Physical Research Laboratory, Ahmedabad, Gujarat, 380009, India.

Talbot length, the distance between two consecutive self-image planes along the propagation axis for a periodic diffraction object (grating) illuminated by a plane wave, depends on the period of the object and the wavelength of illumination. This property makes the Talbot effect a straightforward technique for measuring the period of a periodic object (grating) by accurately determining the Talbot length for a given illumination wavelength. However, since the Talbot length scale is proportional to the square of the grating period, traditional Talbot techniques face challenges when dealing with smaller grating periods and minor changes in the grating period.

View Article and Find Full Text PDF

The detectability size threshold of visible particles (″visibility″ size) in the context of visual inspection of parenteral drug products has been an elusive target for several decades. The current common sense, also reflected in official guidelines, dictates that particles of different shapes and morphologies have different ″visibility″ size thresholds, that can range between hundreds and thousands of micrometers. This study demonstrates experimentally for the first time that it is possible to define a single, shape- and morphology- independent detectability size threshold, identical across particles of various types, provided that observation conditions and product attributes are kept constant.

View Article and Find Full Text PDF

Self-Assembly of Human Fibrinogen into Microclot-Mimicking Antifibrinolytic Amyloid Fibrinogen Particles.

ACS Appl Bio Mater

December 2024

MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Recent clinical studies have highlighted the presence of microclots in the form of amyloid fibrinogen particles (AFPs) in plasma samples from Long COVID patients. However, the clinical significance of these abnormal, nonfibrillar self-assembly aggregates of human fibrinogen remains debated due to the limited understanding of their structural and biological characteristics. In this study, we present a method for generating mimetic microclots in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!