Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, is a serious threat to piglets and has zoonotic potential. Here, we aimed to further explore the role of aminopeptidase N (APN) as a receptor for PDCoV and test the inhibitory effect of a chimeric APN protein strategy on PDCoV infection. PK-15 cells and LLC-PK1 cells expressing chimeric APN were selected and infected with PDCoV. Viral replication was significantly decreased in these chimeric APN cells compared with that in control group cells. To further characterize the effect of the chimeric APN strategy on PDCoV infection , primary intestinal epithelial cells isolated from chimeric APN pigs were inoculated with PDCoV. Viral challenge of these cells led to decreased PDCoV infection. More importantly, virally challenged chimeric APN neonatal piglets displayed reduced viral load, significantly fewer microscopic lesions in the intestinal tissue, and no diarrhea. Taken together, these findings deepen our understanding of the mechanism of PDCoV infection and provide a valuable model for the production of disease-resistant animals.
Importance: Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes diarrhea in piglets and possesses the potential to infect humans. However, there are currently no effective measures for the prevention or control of PDCoV infection. Here, we have developed PK-15 cells, LLC-PK1 cells, and primary intestinal epithelial cells expressing chimeric APN, and viral challenge of these cells led to decreased PDCoV infection. Furthermore, virally challenged chimeric APN neonatal piglets displayed reduced viral load, significantly fewer microscopic lesions in the intestinal tissue, and no diarrhea. These data show that chimeric APN is a promising strategy to combat PDCoV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334500 | PMC |
http://dx.doi.org/10.1128/jvi.00611-24 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!