All-solid-state sodium batteries (ASB) emerged as a strong contender in the global electrochemical energy storage market as a replacement for current lithium-ion batteries (LIB) owing to their high abundance, low cost, high safety, high energy density, and long calendar life. Inorganic electrolytes (IEs) are highly preferred over the conventional liquid and solid polymer electrolytes for sodium-ion batteries (SIBs) due to their high ionic conductivity (∼10-10 S cm), wide potential window (∼5 V), and overall better battery performances. This review discusses the bird's eye view of the recent progress in inorganic electrolytes such as Na-β"-alumina, NASICON, sulfides, antipervoskites, borohydride-type electrolytes, etc. for ASBs. Current state-of-the-art inorganic electrolytes in correlation with their ionic conduction mechanism present challenges and interfacial characteristics that have been critically reviewed in this review. The current challenges associated with the present battery configuration are overlooked, and also the chemical and electrochemical stabilities are emphasized. The substantial solution based on ongoing electrolyte development and promising modification strategies are also suggested.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325648 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.4c01845 | DOI Listing |
Molecules
January 2025
Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
The importance of fluorine and aluminum in all aspects of daily life has led to an enormous increase in human exposure to these elements in their various forms. It is therefore important to understand the routes of exposure and to investigate and understand the potential toxicity. Of particular concern are aluminum-fluoride complexes (AlF), which are able to mimic the natural isostructural phosphate group and influence the activity of numerous essential phosphoryl transferases.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland.
The dynamically developing field of implantology requires researchers to search for new materials and solutions. In this study, TiNbZr samples were investigated as an alternative for popular, but potentially hazardous TiAl6V4. Samples were etched, sandblasted, subjected to PEO, and covered in AgNP suspension.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
An experimental investigation is conducted to identify the optimal blend of fluoroethylene carbonate (FEC), 3,3,3-trifluoropropylene carbonate (TFEC), and various fluorinated ethers, including 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (HFE), 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), and bis(2,2,2-trifluoroethyl) ether (BTE), to enhance the performances of lithium-ion cells at high voltage. The cell incorporating TTE exhibits a significantly superior capacity for retention after long-term cycling at 4.5 V, which might be attributed to the improved kinetics of lithium ions and the generation of a thin, reliable, and inorganic-rich electrode-electrolyte interface.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
The design of efficient advanced oxidation processes (AOPs) in the presence of bicarbonate has long attracted considerable attention in the field of environmental catalysis. In this study, sodium bicarbonate (NaHCO) as one of the most abundant substances in actual water, was introduced to a NaClO/Ru(III) system to enhance the removal of acid orange 7(AO7). NaHCO could significantly improve the removal efficiency of the Ru(III)/NaClO process in HCO at a pH range of 6.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
ERF56, a member of the APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor (TF) family, was reported to be an early nitrate-responsive TF in . But the function of in nitrate signaling remains not entirely clear. This study aimed to investigate the role of in nitrate-dependent plant growth and nitrate signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!