The exploration of endohedral fullerenes has garnered significant attention recently due to their distinctive chemical, electrochemical, and optoelectronic properties. Charge transfer, which usually occurs from encapsulated species to fullerenes, importantly affects the structures and properties of endohedral fullerenes. In this study, we theoretically investigated endohedral superhalogen fullerenes X@C (X = BO, BeF; 2 = 60, 70), in which the charge is reversely transferred from the fullerene to the superhalogen, by using density functional theory calculations and molecular dynamics simulations. Both natural population analysis and the quantum theory of atoms in molecules confirm about one electron transfer from the fullerene to the superhalogen, resulting in the formal valence state of X@C. Energy decomposition analysis on the interaction between the superhalogen and fullerene revealed that electrostatic energy contributes predominantly to the total interaction energy. These endohedral superhalogen fullerenes with cationic fullerenes were predicted to be able to serve as building blocks for one dimensional fullerene-based nanowires when combined with endohedral alkali-metallofullerenes with anionic fullerenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp02082k | DOI Listing |
J Sep Sci
January 2025
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.
View Article and Find Full Text PDFMolecules
January 2025
School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
Isoindigo (IID)-based non-fullerene acceptors, known for their broad absorption spectra and high charge carrier mobilities, play a crucial role in organic photovoltaics. In this study, two A-DA'D-A type unfused ring acceptors (URAs), IDC8CP-IC and IDC6CP-IC, were designed and synthesized using cyclopentadithiophene (CPDT) and IID core units, each functionalized with different alkyl chains (2-hexyldecyl and 2-octyldodecyl), through an atom- and step-efficient direct C-H arylation (DACH) method. Both URAs, despite the absence of non-covalent conformation locking between CPDT and IID, demonstrated favorable molecular planarity, broad absorption ranges, low band gaps, and high molar absorption coefficients.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang, 050018, P. R. China.
An aptamer-antibody sandwich electrochemical immunosensor was studied. FeO/MWCNTs-COOH/Nafion was modified and fixed on a glassy carbon electrode to amplify electrical signals. The antibody was coupled with AuNPs to form conjugates.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry University of Tennessee, Knoxville, Tennessee 37996-1600, United States.
A series of 2-pyridone[α]-fused BOPHYs - were prepared via a two-step procedure involving the preparation of enamine, followed by an intramolecular heterocyclization reaction. In addition to being fully conjugated with the BOPHY core pyridone fragment, BOPHYs and have a pyridine group connected to the BOPHY core via one- or two -CH- groups. New BOPHYs were characterized by spectroscopy as well as X-ray diffraction.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
The ultrafast excited-state dynamics of endohedral fullerenes are crucial in their photophysical and photochemical processes when they are employed as photovoltaic devices, photocatalytic devices, and single-molecule devices. In this study, by employing the non-adiabatic molecular dynamics simulations based on the time-dependent Kohn-Sham (TD-KS) method, we theoretically studied the size effect on ultrafast excited-state decay dynamics of the photoexcited Be electron in endohedral fullerenes Be@C (2 = 60, 70, and 80). These excited-state decay dynamics, which involve the charge-transfer process, occur in an ultrafast time scale of about 3 ps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!