Laminating Layered Structures of 2D MXene and Graphene Oxide for High-Performance All-Solid-State Supercapacitors.

Small

Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.

Published: November 2024

Graphene oxide (GO)-based all-solid-state supercapacitors (SCs) provide an important complement to liquid- and gel-electrolyte-based SCs in a variety of applications, including flexible electronics. Still, their mediocre capacitance and complex fabrication methods hold back the realization of their full potential. Here, a simple fabrication of all-solid-state SCs with layered GO as a solid electrolyte and MXene as electrodes is demonstrated. The resultant SCs show excellent energy storage capacitance comparable to other MXene-based SCs using liquid electrolytes. The outperformance is attributed to extra interlayer spacing expansion and improved ion transport kinetics thanks to a synergistic water-absorbing effect due to the hydrophilicity of both MXene and GO in combination, which interestingly satisfies the intrinsic surface-dominated pseudocapacitive behavior of MXene. The application of this SC in humidity sensing has also been demonstrated to be fast responsive. The findings describe in this work provide a means of improving the capacitance performance using GO as a solid electrolyte with MXene as the electrodes and exploit the potential application as electronic elements for smart devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402422DOI Listing

Publication Analysis

Top Keywords

graphene oxide
8
all-solid-state supercapacitors
8
solid electrolyte
8
electrolyte mxene
8
mxene electrodes
8
mxene
5
scs
5
laminating layered
4
layered structures
4
structures mxene
4

Similar Publications

l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.

View Article and Find Full Text PDF

Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).

View Article and Find Full Text PDF

Volatile Sieving Using Architecturally Designed Nanochannel Lamellar Membranes in Membrane Desalination.

ACS Nano

January 2025

Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.

Thermally driven membrane desalination processes have garnered significant interest for their potential in the treatment of hypersaline wastewater. However, achieving high rejection rates for volatiles while maintaining a high water flux remains a considerable challenge. Herein, we propose a thermo-osmosis-evaporation (TOE) system that utilizes molecular intercalation-regulated graphene oxide (GO) as the thermo-osmotic selective permeation layer, positioned on a hydrophobic poly(vinylidene fluoride) fibrous membrane serving as the thermo-evaporation layer.

View Article and Find Full Text PDF

Differential insulin response characteristics of graphene oxide-gold nanoparticle composites under varied synthesis conditions.

PLoS One

January 2025

Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.

The structural alterations in the constituent materials of nanocomposites such as graphene nanocomposites typically induce changes in their properties including mechanical, electrical, and optical properties. Therefore, by altering the preparation conditions of nanocomposites and investigating their responsiveness to basic biomolecules (such as proteins), it is possible to explore the application potentials of the composites and guide development of new nanocomposite preparation. In this study, different composites of graphene oxide and gold nanoparticles (AuNPs/GO) were obtained by varying the volumes of reducing agents used in the one-pot hydrothermal method.

View Article and Find Full Text PDF

Enhancing CO Oversaturation in the Confined Water Enables Superior Gas Selectivity of 2D Membranes.

J Phys Chem Lett

January 2025

Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.

Due to the global demands on carbon neutralization, CO separation membranes, particularly those based on two-dimensional (2D) materials, have attracted increasing attention. However, recent works have focused on the chemical decoration of membranes to realize the selective transport, leading to the compromised stability in the presence of moisture. Herein, we develop a series of 2D capillaries based on layered double hydroxide (LDH), graphene oxide, and vermiculite to enhance the oversaturation of CO in the confined water for promoting the membrane permselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!