Purpose: The purpose of the study is to evaluate the healing potential of a full-thickness tendon defect in the rotator cuff of rabbits using a bioabsorbable scaffold impregnated with bone marrow-mesenchymal stem cells (BM-MSCs) or rotator cuff-derived mesenchymal stem cells (RC-MSCs).

Methods: Sixteen adult rabbits were subjected to a full-thickness rotator cuff deficit. Rabbits were randomly assigned to four groups of four animals. In Group 0 (control), the deficit was left untreated. In Group 1, the deficit was treated with a single synthetic scaffold alone. In Group 2, the deficit was treated with the previous scaffold loaded with allogeneic BM-MSCs. In Group 3, the deficit was treated with the previous scaffold loaded with allogenic RC-MSCs. After animal sacrifice, tissue samples were subjected to histological and immunohistochemical analysis.

Results: Group 1 showed the highest mean tendon maturing score (15.3 ± 0.9) postoperatively, being significantly higher, in comparison to groups 0, 2 and 3 (p = 0.01, 0.02 and 0.01, respectively). Group 1 showed the highest mean collagen I/collagen III ratio (1.4 ± 0.8) postoperatively but without any statistical significance.

Conclusions: The utilization of MSCs in rotator cuff repair in a rabbit model has not been associated with an enhancement in tendon healing in 16 weeks postoperatively, in comparison to controls and bioabsorbable scaffolds. The addition of MSCs does not result in better rotator cuff healing.

Level Of Evidence: Not applicable. This is an animal study.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ksa.12385DOI Listing

Publication Analysis

Top Keywords

rotator cuff
20
stem cells
12
group deficit
12
deficit treated
12
mesenchymal stem
8
bioabsorbable scaffold
8
tendon healing
8
treated previous
8
previous scaffold
8
scaffold loaded
8

Similar Publications

Background: Studies are still limited on the isolated effect of retear after arthroscopic rotator cuff repair (ARCR) on functional outcomes after the midterm period.

Purpose: To assess the effect of retear at midterm follow-up after ARCR and to identify factors associated with the need for revision surgery.

Study Design: Cohort study; Level of evidence, 3.

View Article and Find Full Text PDF

Digital muscle reconstructions have gained attraction in recent years, serving as powerful tools in both educational and research contexts. These reconstructions can be derived from various 2D and 3D data sources, enabling detailed anatomical analyses. In this study, we evaluate the efficacy of surface scans in accurately reconstructing the volumes of the rotator cuff and teres major muscles across a diverse sample of hominoids.

View Article and Find Full Text PDF

Background: Pectoralis minor (PM) shortening and posterior shoulder tightness (PST) are considered potential soft tissue alterations associated with rotator cuff related shoulder pain (RCRSP). Yet, their precise contribution to pain and disability remains unclear.

Purpose: To explore the association between both PM length and PST and self-reported shoulder pain and disability in individuals with and without RCRSP.

View Article and Find Full Text PDF

Ultrasound radiomics predict the success of US-guided percutaneous irrigation for shoulder calcific tendinopathy.

Jpn J Radiol

January 2025

Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece.

Objective: Calcific tendinopathy, predominantly affecting rotator cuff tendons, leads to significant pain and tendon degeneration. Although US-guided percutaneous irrigation (US-PICT) is an effective treatment for this condition, prediction of patient' s response and long-term outcomes remains a challenge. This study introduces a novel radiomics-based model to forecast patient outcomes, addressing a gap in the current predictive methodologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!