CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a pivotal repressor in plant photomorphogenesis, has been extensively studied in various plant processes. However, the specific roles of COP1 in fruit remain poorly understood. Here, we functionally characterized SlCOP1-1 (also known as LeCOP1), an Arabidopsis (Arabidopsis thaliana) COP1 ortholog, in tomato (Solanum lycopersicum) fruit ripening and disease resistance. Despite the clear upregulation of SlCOP1-1 during fruit ripening, knockout or overexpression (OE) of SlCOP1-1 in tomatoes only minimally affected ripening. Intriguingly, these genetic manipulations substantially altered fruit resistance to the fungal pathogen Botrytis cinerea. Proteomic analysis revealed differential accumulation of proteins associated with fruit disease resistance upon SlCOP1-1 knockout or OE. To unravel the mechanism of SlCOP1-1 in disease resistance, we conducted a screen for SlCOP1-1-interacting proteins and identified the stress-related bZIP transcription factor SlOpaque2. We provide evidence that SlOpaque2 functions in tomato resistance to B. cinerea, and SlCOP1-1-mediated mono-ubiquitination and stabilization of SlOpaque2 contributes to fruit resistance against B. cinerea. Our findings uncover a regulatory role of COP1 in controlling fruit disease resistance, enriching our understanding of the regulatory network orchestrating fruit responses to disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444291 | PMC |
http://dx.doi.org/10.1093/plphys/kiae404 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China.
The clinical application of tyrosine kinase inhibitors (TKIs) is rapidly growing and has emerged as a cornerstone in the treatment of both solid tumors and hematologic malignancies. However, resistance to TKI targets and disease progression remain inevitable. Nanocarrier-mediated delivery has emerged as a promising strategy to overcome the limitations of the TKI application.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.
Salmonella enterica serovar Typhimurium is a prevalent food-borne pathogen that is usually associated with gastroenteritis infection. S. Typhimurium is also a major cause of bloodstream infections in sub-Saharan Africa, and is responsible for invasive non-typhoidal Salmonella (iNTS) disease.
View Article and Find Full Text PDFDiabetes Care
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA.
Objective: We investigated associations between per- and polyfluoroalkyl substances (PFAS) and changes in diabetes indicators from pregnancy to 12 years after delivery among women with a history of gestational diabetes mellitus (GDM).
Research Design And Methods: Eighty Hispanic women with GDM history were followed from the third trimester of pregnancy to 12 years after delivery. Oral and intravenous glucose tolerance tests were conducted during follow-up.
Asian Pac J Cancer Prev
January 2025
Research Center for Noncommunicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran.
Background: Breast cancer (BC) is a global challenge that affects a large portion of individuals, especially women. It has been suggested that microparticles (MPs) can be used as a diagnostic, prognostic, or therapeutic biomarker in various diseases. Moreover, MPs are known to elevate in cancer cases.
View Article and Find Full Text PDFPlant J
January 2025
National Key Laboratory of Crop improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
DREB1A, a pivotal transcription factor, has long been known to regulate plant abiotic stress tolerance. However, its role in plant biotic stress tolerance and the underlying mechanisms have remained a mystery. Our research reveals that the maize ZmDREB1A gene is up-regulated in maize seedlings when the plants are infected by Rhizoctonia solani (R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!