Plant-beneficial bacteria hold the potential to be used as inoculants in agriculture to promote plant growth and health through various mechanisms. The discovery of new strains tailored to specific agricultural needs remains an open area of research. In this study, we report the isolation and characterization of four novel species associated with the wheat rhizosphere. Comparative genomic analysis with all available type strains revealed species-level differences, substantiated by both digital DNA-DNA hybridization and average nucleotide identity, underscoring their status as novel species. This was further validated by the phenotypic differences observed when compared to their closest relatives. Three of the novel species belong to the species complex, with two representing a novel lineage in the phylogeny. Functional genome annotation revealed the presence of specific features contributing to rhizosphere colonization, including flagella and components for biofilm formation. The novel species have the genetic potential to solubilize nutrients by acidifying the environment, releasing alkaline phosphatases and their metabolism of nitrogen species, indicating potential as biofertilizers. Additionally, the novel species possess traits that may facilitate direct promotion of plant growth through the modulation of the plant hormone balance, including the ACC deaminase enzyme and auxin metabolism. The presence of biosynthetic clusters for toxins such as hydrogen cyanide and non-ribosomal peptides suggests their ability to compete with other microorganisms, including plant pathogens. Direct inoculation of wheat roots significantly enhanced plant growth, with two strains doubling shoot biomass. Three of the strains effectively antagonized fungal phytopathogens (, , and ), demonstrating their potential as biocontrol agents. Based on the observed genetic and phenotypic differences from closely related species, we propose the following names for the four novel species: sp. nov., type strain DGS24 ( = DSM 117501 = CECT 31011), sp. nov., type strain DGS26 ( = DSM 117502 = CECT 31012), sp. nov., type strain DGS28 ( = DSM 117503 = CECT 31013) and sp. nov., type strain DGS32 ( = DSM 117504 = CECT 31014).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284033 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1440341 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Research and Innovation, MATIS, Reykjavk, Iceland.
A novel bacterium, designated 19SA41, was isolated from the air of the Icelandic volcanic island Surtsey. Cells of strain 19SA41 are Gram-stain-negative, strictly aerobic, non-motile rods and form pale yellow-pigmented colonies. The strain grows at 4-30 °C (optimum, 22 °C), at pH 6-10 (optimum, pH 7.
View Article and Find Full Text PDFInt Urogynecol J
January 2025
Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
Introduction And Hypothesis: The relationship between autophagy and pelvic organ prolapse (POP) remains unknown. The aim of this novel experimental study, utilizing tissue samples derived from women undergoing gynecological surgery, is to investigate the role of autophagy in mitigating collagen degradation in human vaginal fibroblasts induced by oxidative stress, with particular emphasis on its implications in the pathogenesis of POP. Exploring the role of autophagy in protecting against collagen degradation and cellular senescence in human vaginal fibroblasts under oxidative stress may offer new insights into therapeutic strategies for conditions such as POP.
View Article and Find Full Text PDFNucleic Acid Ther
January 2025
Global Preclinical Safety, AbbVie Inc., North Chicago, Illinois, USA.
The Oligonucleotide Nonclinical Working Group (WG) of the European Federation of Pharmaceutical Industries and Associations conducted an industry survey to understand current practices and regulatory expectations for genotoxicity and carcinogenicity assessment of oligonucleotide therapeutics (ONTs), along with historical genotoxicity testing results. The survey, involving 29 pharmaceutical and biotechnology companies, revealed a consistent absence of genotoxicity across a diverse range of oligonucleotide classes and chemistries, consistent with previous observations. Despite the lack of genotoxicity, companies continue to follow standard testing guidelines, with only limited divergence.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiaotong University, 800 Dongchuan Road, Minhang District, Shanghai, CHINA.
Diabetes significantly increases the risk of serious health issues, including prolonged skin inflammation and delayed wound healing, owing to inferior glucose control and suppression of the immune system. Although traditional hydrogen (H2) therapy is slightly effective, its ability to tailor the release of H2 on the skin is limited. Accordingly, this study proposed a novel strategy for electrocatalytic H2 release under neutral conditions to promote wound healing in diabetic mice and rabbit.
View Article and Find Full Text PDFProteomes
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430026, China.
is an aquatic plant with a high ornamental value due to its flower. Despite the release of several versions of the lotus genome, its annotation remains inefficient, which makes it difficult to obtain a more comprehensive knowledge when -omic studies are applied to understand the different biological processes. Focusing on the petaloid of the lotus flower, we conducted a comparative proteomic analysis among five major floral organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!