Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The radiation use efficiency (RUE) is one of the most important functional traits determining crop productivity. The coordination of the vertical distribution of light and leaf nitrogen has been proven to be effective in boosting the RUE from both experimental and computational evidence. However, previous simulation studies have primarily assumed that the leaf area is uniformly distributed along the canopy depth, rarely considering the optimization of the leaf area distribution, especially for C4 crops. The present study hypothesizes that the RUE may be maximized by matching the leaf area and leaf nitrogen vertical distributions in the canopy. To test this hypothesis, various virtual maize canopies were generated by combining the leaf inclination angle, vertical leaf area distribution, and vertical leaf nitrogen distribution and were further evaluated by an improved multilayer canopy photosynthesis model. We found that a greater fraction of leaf nitrogen is preferentially allocated to canopy layers with greater leaf areas to maximize the RUE. The coordination of light and nitrogen emerged as a property from the simulations to maximize the RUE in most scenarios, particularly in dense canopies. This study not only facilitates explicit and precise profiling of ideotypes for maximizing the RUE but also represents a primary step toward high-throughput phenotyping and screening of the RUE for massive numbers of inbred lines and cultivars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284131 | PMC |
http://dx.doi.org/10.34133/plantphenomics.0217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!