Pulsed field ablation with irreversible electroporation for the treatment of atrial fibrillation involves tissue-specific and non-thermal energy-induced cell necrosis, which helps avoid complications, such as pulmonary vein stenosis, atrial collateral tissue damage, and extensive atrial structural damage, often encountered with traditional thermal ablation. In existing clinical trials, pulsed field ablation has shown excellent effects on pulmonary vein isolation in patients with paroxysmal and persistent atrial fibrillation. Pulsed field ablation is easy, simple, and quick and can reduce iatrogenic injury. Therefore, the application of pulsed field ablation technology in the treatment of atrial fibrillation has a promising future. Notably, the adjustment of parameters in pulsed field ablation with different ablation catheter systems can strongly affect the area and depth of the necrotic myocardium, which greatly affects the likelihood of atrial fibrillation recurrence and incidence of adverse complications after ablation. In this paper, we review the mechanisms, advantages, and limitations of pulsed field ablation based on the results of a series of previous studies and provide ideas and directions for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264014 | PMC |
http://dx.doi.org/10.31083/j.rcm2504138 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!