A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Therapeutic efficacy of Strobilanthes urticifolia-infused pectin/polyacrylic acid hydrogel for targeted hepatorenal fibrosis mitigation: A multifaceted biomaterial approach. | LitMetric

Pectin/polyacrylic acid (PPAA) hydrogel is a unique and versatile biomaterial with applications in drug delivery, wound healing, tissue engineering, and agriculture, owing to its tailored properties and multifunctional attributes. This study aims to harness the therapeutic potential of Strobilanthes urticifolia extract within a PPAA hydrogel matrix to attenuate liver and kidney fibrosis through targeted and sustained delivery of biologically active substances. PPAA hydrogel was prepared by free radical polymerization, followed by its porosity and swelling determination. The results depicted the porous nature of PPAA hydrogel and improved swelling properties at pH 7.4, confirming its drug delivery promise. The polyphenolic-enriched S. urticifolia extracts of leaf and flower were loaded onto PPAA hydrogel, and the loading efficiency was 87% (leaf) and 62.5% (flower). Moreover, slow-release studies showed controlled and prolonged release of polyphenols for 7 days. The polyphenolic-enriched hydrogel's microstructure was characterized using SEM, FTIR, and thermogravimetric analysis (TGA). SEM results revealed a highly porous structure of polyphenol enriched PPAA hydrogel, while FTIR analysis confirmed the presence of functional groups such as OH group of carboxylic acid, aliphatic CH stretching due to acrylic acid grafting with pectin, CO stretching due to acid linkage with pectin, CH of aromatic ring, and CH of carboxylate salt in PPAA hydrogel. TGA of PPAA hydrogel showed its stability up to 488°C. Additionally, the S. urticifolia extract loaded PPAA hydrogel displayed significant antibacterial properties and minimum inhibitory concentrations against both Gram-positive and Gram-negative bacteria. In vivo studies carried out on rats demonstrated that polyphenolic enriched PPAA hydrogel significantly attenuates liver and kidney fibrosis. Therefore, it is concluded from the present study that loading of polyphenolic enriched extract from leaves and flower of S. urticifolia enhanced the biomedical applications of PPAA hydrogel. RESEARCH HIGHLIGHTS: The PPAA hydrogel developed in this study exhibits a highly porous structure and improved swelling properties at physiological pH (7.4), making it an excellent candidate for drug delivery systems. S. urticifolia extracts, rich in polyphenols, were successfully incorporated into the PPAA hydrogel with high loading efficiencies of 87% for leaf and 62.5% for flower extracts. Loading of polyphenolic enriched extracts of S. urticifolia onto PPAA enhanced its biological activities such as antibacterial, hepatoprotective, and reno-protective activities as depicted by in vitro and in vivo studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24667DOI Listing

Publication Analysis

Top Keywords

ppaa hydrogel
52
hydrogel
14
ppaa
14
drug delivery
12
polyphenolic enriched
12
pectin/polyacrylic acid
8
urticifolia extract
8
liver kidney
8
kidney fibrosis
8
improved swelling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!