Making ingestible devices edible facilitates diagnosis and therapy inside the body without the risk of retention; however, food materials are generally soft, absorb water molecules, and are not suitable for electronic devices. Here, we fabricated an edible water diffusion barrier film made by gelatin-beeswax composites for the encapsulation of transient electronics. Hydrophobic beeswax and hydrophilic gelatin are inherently difficult to mix; therefore, we created an emulsion simply by raising the temperature high enough to melt the materials and vigorous stirring them. As they cool, the beeswax with a relatively high solidification temperature aggregates and forms microspheres, which increases the gelatin gel's viscoelasticity and immobilizes the emulsion structure in the film. The thermoresponsive gelatin imparts degradability to the barrier and its stickiness also enables transfer of metal patterned electronics. Furthermore, we designed an edible resonator on the film and demonstrated its operation in an abdominal phantom environment; the resonator was made to be degradable in a warm aqueous solution by optimizing the composition ratio of the gelatin and beeswax. Our findings provide insight into criteria for making transient electronics on hydrophilic substrates with hydrophobic water diffusion barriers. This proof-of-concept study expands the potential of operating edible electronics in aqueous environments in harmony with the human body and nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c08493 | DOI Listing |
Case Rep Gastrointest Med
January 2025
Department of Infectious Diseases, Maimonides Medical Center, Brooklyn, New York 11219, USA.
Typhoid fever is a multisystemic illness caused by and , transmitted fecal orally through contaminated water and food. It is a rare diagnosis in the US, with most cases reported in returning travelers. Hepatitis and cholestasis are rare sequelae of infection.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.
Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, via Brecce Bianche 12, 60131 Ancona, Italy.
The reuse of stormwater represents a potential option for meeting water demands in water stressed regions as well as preventing and mitigating diffuse pollution of receiving water bodies. Particularly, the elaboration of a risk management plan for stormwater reuse may help to understand associated environmental and public health risks and design fit-for-purpose water treatment processes. In this work, it is presented an innovative methodology to perform quantitative microbial risk assessment (QMRA) for stormwater reuse by using data simulated by SWMM software.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
The spread of antibiotic resistance genes (ARGs) in rural wastewater threatens both ecological environment and human health. Earthworm ecological filters (EEFs) represent a green technology for rural sewage treatment. However, their effectiveness in removing ARGs remains a significant challenge.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
Objectives: To investigate glymphatic function in idiopathic normal pressure hydrocephalus (iNPH) using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) method and to explore the associations of ALPS index with ventriculomegaly and white matter hyperintensities (WMH).
Materials And Methods: This study included 41 patients with iNPH and 40 age- and sex-matched normal controls (NCs). All participants underwent brain MRI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!