This study employs the molten-salt-shielded method to dope the TiAlC MAX phase with Nb and Mo, aiming to expand the intrinsic potential of the material. X-ray diffraction confirms the preservation of the hexagonal lattice structure of TiAlC, while Raman and X-ray photoelectron spectroscopic analyses reveal the successful incorporation of dopants with subtle yet significant alterations in the vibrational modes and chemical environment. Scanning electron microscopy with energy-dispersive X-ray spectroscopy characterizations illustrate the characteristic layered morphology and uniform dopant distribution. Density functional theory simulations provide insights into the modified electronic structure, displaying changes in carrier transport mechanisms and potential increases in metallic conductivity, particularly when doping occurs at both the M and A sites. The computational findings are corroborated by the experimental results, suggesting that the enhanced material may possess improved properties for electronic applications. This comprehensive approach not only expands the MAX phase family but also tailors its functionality, which could allow for the production of hybrid materials with novel functionalities not present in the pristine form.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323249PMC
http://dx.doi.org/10.1021/acs.inorgchem.4c00648DOI Listing

Publication Analysis

Top Keywords

max phase
8
maximizing potential
4
potential applications
4
applications max
4
max phases
4
phases sustainable
4
sustainable synthesis
4
synthesis multielement
4
multielement tialc
4
tialc study
4

Similar Publications

Childhood cancers, with leukemia at the forefront, comprise 97% acute leukemia and 3% chronic leukemia, with 75% of acute leukemias being of lymphoblastic origin. Over the past 50 years, survival rates have witnessed a remarkable increase, progressing from around 10% to achieving cure rates exceeding 90% in certain childhood ALL subgroups with the advent of combined therapies. Between 1999 and 2018, a total of 123 patients diagnosed with B-ALL were initially identified, but after applying exclusion criteria, 105 patients were included in the evaluation, who were treated with COG protocols at our center.

View Article and Find Full Text PDF

Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells is a key mechanism in anti-cancer therapies with monoclonal antibodies, including cetuximab (EGFR-targeting) and avelumab (PDL1-targeting). Fc gamma receptor IIIa (FcγRIIIa) polymorphisms impact ADCC, yet their clinical relevance in NK cell functionality remains debated. We developed two complementary flow cytometry assays: one to predict the FcγRIIIa-V158F polymorphism using a machine learning model, and a 15-color flow cytometry panel to assess antibody-induced NK cell functionality and cancer-immune cell interactions.

View Article and Find Full Text PDF

Activation and memory of the heatshock response is mediated by Prion-like domains of sensory HSFs in Arabidopsis.

Mol Plant

January 2025

Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:

Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heatshock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood.

View Article and Find Full Text PDF

Study Design: Retrospective Cohort Study.

Objectives: The current recommended treatment for Giant Cell Tumour (GCT) of the spine is en bloc excision. Denosumab is a monoclonal antibody reducing osteoclast activity that shows promising results when used as a neo - adjuvant treatment.

View Article and Find Full Text PDF

Photonic axion insulator.

Science

January 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.

Axions, hypothetical elementary particles that remain undetectable in nature, can arise as quasiparticles in three-dimensional crystals known as axion insulators. Previous implementations of axion insulators have largely been limited to two-dimensional systems, leaving their topological properties in three dimensions unexplored in experiment. Here, we realize an axion insulator in a three-dimensional photonic crystal and probe its topological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!