Recognition of signaling molecules for coordinated regulation of target genes is a fundamental process for biological systems. Cells often rely on transcription factors to accomplish these intricate tasks, yet the subtle conformational changes of protein structures, coupled with the complexity of intertwined protein interaction networks, pose challenges for repurposing these for bioengineering applications. This study introduces a novel platform for ligand-responsive gene regulation, termed START (Synthetic Trans-Acting Riboswitch with Triggering RNA). Inspired by the bacterial ligand sensing system, riboswitch, and the synthetic gene regulator, toehold switch, the START platform enables the implementation of synthetic biosensors for various ligands. Rational sequence design with targeted domain optimization yields high-performance STARTs with a dynamic range up to 67.29-fold and a tunable ligand sensitivity, providing a simple and intuitive strategy for sensor engineering. The START platform also exhibits modularity and composability to allow flexible genetic circuit construction, enabling seamless implementation of OR, AND, and NOT Boolean logic gates for multiple ligand inputs. The START design principle is capable of broadening the suite of synthetic biosensors for diverse chemical and protein ligands, providing a novel riboregulator chassis for synthetic biology and bioengineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423158PMC
http://dx.doi.org/10.1002/advs.202402029DOI Listing

Publication Analysis

Top Keywords

bacterial ligand
8
ligand sensing
8
bioengineering applications
8
start platform
8
synthetic biosensors
8
start
5
synthetic
5
start versatile
4
platform
4
versatile platform
4

Similar Publications

1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection.

View Article and Find Full Text PDF

Cell wall components of gut commensal bacteria stimulate peritrophic matrix formation in malaria vector mosquitoes through activation of the IMD pathway.

PLoS Biol

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.

View Article and Find Full Text PDF

An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.

View Article and Find Full Text PDF

The positioning of the hydroxy group plays a crucial role in the coordination of Schiff bases with copper ions and their antibacterial effectiveness. This potential is an area of interest for future exploration, although no specific studies have been conducted. This study aims to reveal the significance of the positioning of the hydroxy group in the ability of the Schiff base to coordinate with copper ion and its antibacterial efficacy against E.

View Article and Find Full Text PDF

Bacterial peptidoglycan, the essential cell surface polymer that protects bacterial integrity, also serves as the molecular pattern recognized by the host's innate immune system. Although the minimal motifs of bacterial peptidoglycan fragments (PGNs) that activate mammalian NOD1 and NOD2 sensors are well-known and often represented by small canonical ligands, the immunostimulatory effects of natural PGNs, which are structurally more complex and potentially can simultaneously activate both the NOD1 and NOD2 signaling pathways in hosts, have not been comprehensively investigated. In particular, many bacteria incorporate additional structural modifications in peptidoglycans to evade host immune surveillance, resulting in diverse structural variations among natural PGNs that may influence their biological effects in hosts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!