Li||LiNi0.8Co0.1Mn0.1O2 batteries,which consist of lithium metal anode (LMA) matched with NCM811 cathode, have an energy density more than twice that of lithium ion battery (LIB). However, the unstable electrode/electrolyte interface still hinders its practical application.Ether electrolytes show promise in improving the stability of LMA and NCM811 cathodes.However, a robust and stable electrode/electrolyte interface in Li||NCM811 batteries cannot be easily and efficiently achieved with most of the ether electrolytes reported in present studies. Herein, we present a straightforward and efficient tri-anion synergistic strategy to overcome this bottleneck. The addition of ClO4- and NO3- anions to LiFSI-based ether electrolytes forms a unique solvation structure with tri-anion (FSI-/ClO4-/NO3-) participation (LB511).This structure not only enhances the electrochemical window of the ether electrolytes but also achieves a stable Li||NCM811 batteries interface.The interaction between electrode and electrolyte is suppressed and an inorganic-rich (LiF/Li3N/LiCl) SEI/CEI layer is formed. Meanwhile, the coordination structure in the LB511 electrolyte increases the overpotential for Li deposition, resulting in a uniform and dense layer of deposition.Therefore, the Li||Cu cells using the LB511 electrolyte have an average CE of 99.6%.The Li||NCM811 batteries was cycled stably for 250 cycles with a capacity retention of 81% in the LB511 electrolyte (N/P = 2.5, 0.5 C).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202401029 | DOI Listing |
Int J Biol Macromol
January 2025
Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130024, PR China. Electronic address:
Solid polymer batteries (SPEs) are highly desirable for energy storage because of the urgent need for higher energy density and safer lithium ion batteries (LIBs). In this work, the single-ion lithium salt PAEK-LiCPSI was synthesized by grafting 3-chloropropanesulfonyl trifluoromethanesulimide lithium (LiCPSI) onto poly(aryl ether ketone) (PAEK). Nanocellulose (NCC), PAEK-LiCPSI, and poly(vinylidene fluoride) (PVDF-HFP) were compounded to obtain NCC reinforced high-performance nanofiber composite polymer electrolytes (NCC/PAEK/PVDF) through electrospinning, which presented tensile strength of 15.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
High degree of fluorination for ether electrolytes has resulted in improved cycling stability of lithium metal batteries due to stable solid electrolyte interphase (SEI) formation and good oxidative stability. However, the sluggish ion transport and environmental concerns of high fluorination degree drive the need to develop less fluorinated structures. Here, we depart from the traditional ether backbone and introduce bis(2-fluoroethoxy)methane (F2DEM), featuring monofluorination of the acetal backbone.
View Article and Find Full Text PDFSmall
January 2025
School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510006, P. R. China.
In situ polymerization of cyclic ethers is a promising strategy to construct solid-state lithium (Li) metal batteries with high energy density and safety. However, their practical applications are plagued by the unsatisfactory electrochemical properties of polymer electrolytes and the unstable solid electrolyte interphase (SEI). Herein, organic perfluorodecanoic acid (PFDA) is proposed as a new initiator to polymerize 1,3-dioxolane electrolyte (PDOL), which enables the as-obtained PDOL electrolyte to deliver greatly enhanced ionic conductivity and broadened electrochemical window.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, PR China. Electronic address:
Localized high-concentration electrolytes (LHCEs) offer a new methodology to improve the functionality of conventional electrolytes. Understanding the impact of antisolvents on bulk electrolytes is critical to the construction of sophisticated LHCEs. However, the mechanism of how antisolvent modulates the electrochemical reactivity of the solvation structure in LHCEs remains unclear.
View Article and Find Full Text PDFNano Lett
January 2025
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!