A novel ARHGAP family gene signature for survival prediction in glioma patients.

J Cell Mol Med

The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.

Published: July 2024

ARHGAP family genes are often used as glioma oncogenic factors, and their mechanism of action remains unexplained. Our research entailed a thorough examination of the immune microenvironment and enrichment pathways across various glioma subtypes. A distinctive 6-gene signature was developed employing the CGGA cohort, leading to insights into the disparities in clinical characteristics, mutation patterns, and immune cell infiltration among distinct risk categories. Additionally, a unique nomogram was established, grounded on ARHGAPs, with DCA curves illustrating the model's prospective clinical utility in guiding therapeutic strategies. Emphasizing the role of ARHGAP30, integral to our model, its impact on glioma severity and the credibility of our risk assessment model were substantiated through RT-qPCR, Western blot analysis, and cellular functional assays. We identified 6 ARHGAP family genes associated with glioma prognosis. Analysis using the Kaplan-Meier method indicated a correlation between elevated risk levels and adverse outcomes in glioma patients. The risk score, linked with tumour staging and IDH mutation status, emerged as an independent factor predicting prognosis. Patients in the high-risk category exhibited increased immune cell infiltration, enhanced tumour mutational burden, more pronounced expression of immune checkpoint genes, and a better response to ICB therapy. A nomogram, integrating the risk score with the pathological features of glioma patients, was developed. DCA analysis and cellular studies confirmed the model's potential to improve clinical treatment outcomes for patients. A novel ARHGAP family gene signature reveals the prognosis of glioma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286547PMC
http://dx.doi.org/10.1111/jcmm.18555DOI Listing

Publication Analysis

Top Keywords

arhgap family
16
glioma patients
12
novel arhgap
8
family gene
8
gene signature
8
glioma
8
family genes
8
immune cell
8
cell infiltration
8
analysis cellular
8

Similar Publications

Identifying the impact of ARHGAP and MAP gene families on autism spectrum disorders.

PLoS One

November 2024

College of Rehabilitation Medicine, Jiamusi University, Jiamusi, HeilongJiang Province, China.

The rising incidence of Autism Spectrum Disorder (ASD) has become a major concern, affecting children's psychological well-being and placing a significant strain on healthcare systems. Despite its impact, the etiological mechanisms underpinning ASD remain elusive. This study leveraged dorsolateral prefrontal cortex gene data from 452 individuals of European descent, sourced from the CommonMindConsortium, and examined ASD-related gene expression data from the Gene Expression Omnibus (GEO) database (GSE18123), along with Genome-Wide Association Studies (GWAS) data from the Lundbeck Foundation Integrated Psychiatric Research and Psychiatric Genomics Consortium.

View Article and Find Full Text PDF
Article Synopsis
  • *This study focuses on the prognostic significance of ARHGAP9 in ccRCC, utilizing data from The Cancer Genome Atlas and protein analysis to compare expression levels in tumor versus normal tissues.
  • *Results show that higher ARHGAP9 expression correlates with advanced cancer stages, poorer patient survival, and significant associations with immune cell infiltration, suggesting its potential as a biomarker for ccRCC prognosis.
View Article and Find Full Text PDF

ARHGAP25, a member of the ARHGAP family, encodes a negative regulator of Rho-GTPase that is important for actin remodeling, cell polarity, and cell migration. ARHGAP25 is down-regulated in a variety of solid tumors and promotes cancer cell growth, migration, and invasion. However, nothing is understood about ARHGAP25's biological function in osteosarcoma.

View Article and Find Full Text PDF

A novel ARHGAP family gene signature for survival prediction in glioma patients.

J Cell Mol Med

July 2024

The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.

ARHGAP family genes are often used as glioma oncogenic factors, and their mechanism of action remains unexplained. Our research entailed a thorough examination of the immune microenvironment and enrichment pathways across various glioma subtypes. A distinctive 6-gene signature was developed employing the CGGA cohort, leading to insights into the disparities in clinical characteristics, mutation patterns, and immune cell infiltration among distinct risk categories.

View Article and Find Full Text PDF

The Rho GTPase activating protein family (ARHGAPs) is expressed in pancreatic adenocarcinoma (PAAD) but its function is unclear. The aim of this study was to explore the role and potential clinical value of ARHGAPs in PAAD. Using TCGA and GEO databases to analyze expression of ARHGAPs in PAAD and normal tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!