Background: Radiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines.
Methods: We generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit.
Results: Increasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ≤ 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NFκB activation, TNF-α release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GROα/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and β-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment.
Conclusions: The iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287895 | PMC |
http://dx.doi.org/10.1186/s13287-024-03847-5 | DOI Listing |
Ultraviolet (UV)-induced DNA mutations produce genetic drivers of cutaneous melanoma initiation and numerous neoantigens that can trigger anti-tumor immune responses in the host. Consequently, melanoma cells must rapidly evolve to evade immune detection by simultaneously modulating cell-autonomous epigenetic mechanisms and tumor-microenvironment interactions. Angiogenesis has been implicated in this process; although an increase of vasculature initiates the immune response in normal tissue, solid tumors manage to somehow enhance blood flow while preventing immune cell infiltration.
View Article and Find Full Text PDFNat Commun
November 2024
School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
The dynamic alteration of the tumor microenvironment (TME) serves as a driving force behind the progression and metastasis of colorectal cancer (CRC). Within the intricate TME, a pivotal player is the extracellular matrix (ECM), where modifications in components, degradation, and stiffness are considered critical factors in tumor development. In this study, we find that the membrane glycoprotein dysadherin directly targets matrix metalloprotease 9 (MMP9), initiating ECM remodeling within the TME and amplifying cancer progression.
View Article and Find Full Text PDFOncogene
January 2025
Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
Endothelial cells (ECs) that line blood vessels act as gatekeepers and shape the metabolic environment of every organ system. In normal conditions, endothelial cells are relatively quiescent with organ-specific expression signatures and metabolic profiles. In cancer, ECs are metabolically reprogrammed to promote the formation of new blood vessels to fuel tumor growth and metastasis.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Biology, Parasitology, and Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Szczecin, Poland.
Acanthamoeba spp. are facultative, opportunistic pathogens that are found in diverse environments. In the hosts, they lead to multi-organ disease.
View Article and Find Full Text PDFLab Invest
December 2024
Department of Ocular Pathology, Dr R.P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India. Electronic address:
High pigmentation and the abundance of M2 macrophages have been identified as negative predictors in uveal melanoma (UM). Risk factors associated with UM that are prevalent in high-risk White populations are still present, although less common, in relatively low-risk Asian populations. Research indicates that proangiogenic M2 macrophages and monosomy 3 play significant roles in UM progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!