Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Male factor infertility affect up to 50% of couples unable to conceive spontaneously. Several non-hormonal pharmacological treatments have been proposed to boost spermatogenesis and increase chances of conception in men with infertility. Still, no clear evidence exists on the most effective treatment strategy.
Objective: We aimed to compare the effectiveness of non-hormonal pharmacological treatment options for men with infertility using a systematic review and network meta-analysis.
Methods: We searched MEDLINE, EMBASE, and CENTRAL until October 2023 for randomised/quasi-randomised trials that evaluated any non-hormonal pharmacological treatment options for men with idiopathic semen abnormalities or those with hypogonadism. We performed pairwise and network meta-analyses using a random effect model. We assessed risk of bias, heterogeneity, and network inconsistency. We calculated the mean rank and the surface under the cumulative ranking curve (SUCRA) for each intervention the maximum likelihood to achieve each of reported outcomes. We reported primarily on sperm concentration and other important semen and biochemical outcomes using standardised mean difference (SMD) and 95% confidence-intervals(CI).
Results: We included 14 randomised trials evaluating four treatments (Clomiphene citrate, Tamoxifen, Aromatase inhibitors, anti-oxidants) and their combinations in 1342 men. The overall quality of included trials was low. Sperm concentration improved with clomiphene compared to anti-oxidants (SMD 2.15, 95%CI 0.78-3.52), aromatase inhibitor (SMD 2.93, 95%CI 1.23-4.62), tamoxifen (SMD - 1.96, 95%CI -3.57; -0.36) but not compared to placebo (SMD - 1.53, 95%CI -3.52- 0.47). Clomiphene had the highest likelihood to achieve the maximum change in sperm concentration (SUCRA 97.4). All treatments showed similar effect for sperm motility, semen volume, and normal sperm morphology. FSH levels showed significant improvement with clomiphene vs.anti-oxidant (SMD 1.48, 95%CI 0.44-2.51) but not compared to placebo. The evidence networks for LH and testosterone suffered from significant inconsistency (p = 0.01) with similar trend of improvement with clomiphene compared to other treatments but not compared to placebo.
Conclusion: There is insufficient evidence to support the routine use of Clomiphene, tamoxifen, and aromatase inhibitors to optimise semen parameters in men with infertility. Future randomised trials are needed to confirm the efficacy of clomiphene in improving fertility outcomes in men.
Prospero: CRD42023430179.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285325 | PMC |
http://dx.doi.org/10.1186/s12894-024-01545-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!