A gap waveguide-based mechanically reconfigurable phase shifter for high-power Ku-band applications.

Sci Rep

Department of Microwave and Antenna Engineering, Faculty of Electronics, Telecommunications, and Informatics, Gdańsk University of Technology, 80-233, Gdańsk, Poland.

Published: July 2024

This paper presents a novel design of a low-loss, reconfigurable broadband phase shifter based on groove gap waveguide (GGW) technology. The proposed phase shifter consists of a folded GGW and three bends with a few pins forming the GGW and one bend attached to a movable plate. This movable plate allows for adjustments to the folded waveguide length, consequently altering the phase of electromagnetic waves. The advantage of GGW technology is that it does not require electrical contact between different parts of a structure. Therefore, it enables the moving parts to slide freely without electromagnetic energy leakage, resulting in improved insertion loss in high-power applications. In addition, in the proposed design, the position of the input and output waveguide ports of the phase shifter remains fixed, which is advantageous from a practical point of view. As shown by measurement and simulation results, there is nearly 37% impedance bandwidth with the highest insertion loss of 0.6 dB, and the developed device has a maximum phase shift of 770° at the center frequency of 13 GHz. The phase shifter can be used for various radar and satellite applications that require phase control, such as beamforming networks and phased array antennas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286826PMC
http://dx.doi.org/10.1038/s41598-024-68221-0DOI Listing

Publication Analysis

Top Keywords

phase shifter
20
phase
8
ggw technology
8
movable plate
8
insertion loss
8
shifter
5
gap waveguide-based
4
waveguide-based mechanically
4
mechanically reconfigurable
4
reconfigurable phase
4

Similar Publications

All-Optical Single-Channel Plasmonic Logic Gates.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.

Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.

View Article and Find Full Text PDF

The cross talk and power consumption of the 2 × 2 optical switch is a key metric in the design of large-scale photonic integrated circuits (PICs). We build a theoretical model of a 2 × 2 Mach-Zehnder interferometer (MZI) optical switch, taking into account both imbalances in the arm loss and the coupler splitting ratio. The splitting ratio imbalance requirement for a given switch cross talk is summarized, which provides a guideline for the switch design.

View Article and Find Full Text PDF

A differential microelectromechanical system (MEMS) quartz resonant accelerometer with a novel oscillating readout circuit is proposed. The phase noise in a piezoelectric quartz resonant accelerometer has been systematically investigated. A high-performance front-end is used to extract the motional charge from a piezoelectric quartz resonator for the first time.

View Article and Find Full Text PDF

We propose a continuously tunable low-loss phase shifter based on weak-dispersion spoof surface plasmon polariton (SSPP) waveguide. Unlike traditional designs of SSPP devices that rely on the strong-dispersion property, we address the high insertion loss issue by leveraging the weak-dispersion region of SSPP. A detailed study reveals the relation between the waveguide length, phase shift, and insertion loss of SSPP.

View Article and Find Full Text PDF

This work presents the generation of an Airy beam by a leaky-wave structure (LWS) designed from a substrate-integrated waveguide (SIW) with dimension-varying slots. The Airy beam is radiated by judiciously designing the length of the slots to modulate the phase distribution. Compared to Airy beams generated by phased array antennas or metasurfaces, no complex feeding network associated with phase shifters and no space-wave illumination is required, thus allowing one to reach a low-profile structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!