Bacillus thuringiensis (Bt) is a widely used microbial insecticide, but its effectiveness is limited due to the degradation of Bt spores and crystals under UV radiation from sunlight. The objective of this study was to develop a novel Bt formulation with improved UV protection by utilizing sulfur quantum dots (SQDs) as stabilizing agents in a Pickering emulsion. The SQDs were comprehensively characterized using FTIR, XRD, TEM, HRTEM, UV, and fluorescence analyses, which confirmed the formation of well-dispersed, spherical SQDs. The microcapsule formulation with SQDs demonstrated superior UV stability, as it maintained 57.77% spore viability after 96 h of UV exposure, in comparison to 33.74% and 31.25% for the SQDs formulation (non-microcapsules) and unprotected Bt formulations (free spore, as a control), respectively. Furthermore, the microcapsule formulation exhibited higher insecticidal activity, resulting in a larval mortality of 71.22%, as opposed to 42.34% and 38.42% for the other formulations. These findings emphasize the effectiveness of microcapsule formulation with SQDs in safeguarding Bt spores and crystals against UV radiation, thereby enhancing their practical application in pest control. This approach presents a promising strategy for the development of biopesticides that are more resilient and have a longer shelf life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286829 | PMC |
http://dx.doi.org/10.1038/s41598-024-68595-1 | DOI Listing |
Pharm Biol
December 2025
Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand.
Aim: Insufficient quality control and limited dissolution of extract capsules restricts their bioavailability and hinder the clinical use for treating mild coronavirus disease 2019 (COVID-19) patients.
Objective: This study aims to investigate pharmacokinetics and safety of high-dosage ethanolic extract (equivalent to 180 or 360 mg/day of andrographolide), relevant dosages used for mild COVID-19 treatment.
Methods: An open-label, single-dose, and repeated-dose conducted in healthy volunteers.
J Clin Aesthet Dermatol
December 2024
Dr. Ablon is with the Ablon Skin Institute and Research Center in Manhattan Beach, California.
Background: Acne vulgaris is a chronic, inflammatory skin disease of the pilosebaceous unit frequently cited as the most common condition diagnosed and treated by dermatologists. Among the many therapies developed for treating acne, none are effective for all patients and new treatments are always being sought. A commercial nutraceutical formulated with vitamins, minerals and a proprietary blend of botanicals has been used as a safe and effective adjunctive therapy for non-cystic acne (Clear Skin Formula; VitaMedica®).
View Article and Find Full Text PDFAm J Health Syst Pharm
January 2025
Pfizer Inc., city/state, USA.
Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China. Electronic address:
Ethnopharmacological Relevance: Originally formulated to mitigate high-altitude sickness, Xinnaoxin capsules (XNX) are composed of three traditional Chinese medicines (Rhodiola rosea L., Lycium barbarum L. and Hippophae rhamnoides) with properties of anti-hypoxia, anti-fatigue, and anti-aging.
View Article and Find Full Text PDFSoft Matter
January 2025
School of Materials Engineering, Purdue University, 701 West Stadium Ave, West Lafayette, IN 47907, USA.
Within coating formulations, microcapsules serve as vehicles for delivering compounds like catalysts and self-healing agents. Designing microcapsules with precise mechanical characteristics is crucial to ensure their contents' timely release and minimize residual shell fragments, thereby avoiding adverse impacts on the coating quality. With these constraints in mind, we explored the use of 1 cSt PDMS oil as a diluent (porogen) in trimethylolpropane trimethacrylate (TMPTMA)-based to fabricate microcapsules with customized mechanical properties and submicrometer debris size after shell breakup that can encapsulate a wide range of compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!