Biobased furans have emerged as chemical building blocks for the development of materials because of their diverse scaffolds and as they can be directly prepared from sugars. However, selective, efficient, and cost-effective scalable conversion of biobased furans remains elusive. Here, we report a robust transaminase (TA) from Shimia marina (SMTA) that enables the scalable amination of biobased furanaldehydes with high activity and broad substrate specificity. Crystallographic and mutagenesis analyses provide mechanistic insights and a structural basis for understanding SMTA, which enables a higher substrate conversion. The enzymatic cascade process established in this study allows one-pot synthesis of 2,5-bis(aminomethyl)furan (BAMF) and 5-(aminomethyl)furan-2-carboxylic acid from 5-hydroxymethylfurfural. The biosynthesis of various furfurylamines, including a one-pot cascade reaction for BAMF generation using whole cells, demonstrates their practical application in the pharmaceutical and polymer industries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286754 | PMC |
http://dx.doi.org/10.1038/s41467-024-50637-x | DOI Listing |
Polymers (Basel)
December 2024
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
PEA 46 is a biobased polymer with promising properties for sustainable packaging applications, which can be obtained via polymerization of a furan 2,5-dicarboxylic acid (2,5-FDCA) derivative and a diol monomer containing internal amide bonds (46 amido diol). In the literature, PEA 46 showed a complex series of thermal transitions during DSC scans. For this reason, in this initial exploratory study PEA 46 was subjected to compression molding and the melting behavior of film samples was investigated with parallel DSC and WAXS analyses.
View Article and Find Full Text PDFBioresour Technol
January 2025
National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
2,5-Furandicarboxylic acid (FDCA) is a high-value chemical extensively used in the production of bio-based polymers, but bioconversion of furan derivatives like 5-hydroxymethylfurfural (HMF) into FDCA remains challenging owing to substrate cytotoxicity. Here, we engineered an Mn(II)-oxidizing Pseudomonas sp. MB04B for efficient FDCA biosynthesis from HMF.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Dalian Key Laboratory of Green Manufacturing Technology for Fine Chemicals Production, College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, P. R. China.
The development of biobased polyesters with the combination of high UV shielding and degradability is a significant challenge. Herein, three 4-membered cyclic monomers containing two pyrrolidone and two furan rings were prepared by the aza-Michael addition of biobased bifuran diamine and dimethyl itaconate (DMI). They were available in melt polycondensation reactions with various diols to synthesize biobased polyesters.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
Worldwide, populations face issues related to water and energy consumption. Water scarcity has intensified globally, particularly in arid and semiarid regions. Projections indicate that by 2030, global water demand will rise by 50%, leading to critical shortages, further intensified by the impacts of climate change.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
In recent years, bio-based poly(ethylene furanoate) has gained the attention of packaging industries owing to its remarkable properties as a promising alternative to fossil-based polymers. It is necessary to synthesize high-molecular-weight polymers using effective and straightforward techniques for their commercialization. In this present work, poly(ethylene 2,5-furan dicarboxylate) (PEF) was produced with a high molecular weight of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!