A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes: access to chiral quaternary cyclopropanes. | LitMetric

Chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes: access to chiral quaternary cyclopropanes.

Nat Commun

Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China.

Published: July 2024

Catalytic asymmetric synthesis of polysubstituted chiral cyclopropane presents a significant challenge in organic synthesis due to the difficulty in enantioselective control. Here we report a rhodium-catalyzed highly chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes affording chiral quaternary cyclopropanes. Importantly, the easy made sterically bulky ligand L1 can effectively suppress hydrogenation and decomposition reactions and give quaternary cyclopropanes with high regio- and enantioselectivities for both aryl and alkyl functionalized substrates. Control experiments and computational studies reveal the sterically hindered well-defined chiral pocket instead of the substrates bearing electron-withdrawing diester groups is important for controlling the enantioselectivity and regioselectivity. Scale-up reaction and follow-up diverse transformations are also presented. Density Functional theory (DFT) computations suggest that the regio- and enantio-selectivities originate from the cyclopropene insertion to the Rh-H bond. The high regioselectivity is found to benefit from the presence of more efficient noncovalent interactions (NCIs) manifesting in the form of C-H···Cl, C-H···N, and l.p(Cl)···π contacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286865PMC
http://dx.doi.org/10.1038/s41467-024-50689-zDOI Listing

Publication Analysis

Top Keywords

quaternary cyclopropanes
12
chemo- regio-
8
regio- enantioselective
8
enantioselective hydroformylation
8
hydroformylation trisubstituted
8
trisubstituted cyclopropenes
8
chiral quaternary
8
cyclopropenes access
4
chiral
4
access chiral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!