Sleep Consolidation Potentiates Sensorimotor Adaptation.

J Neurosci

Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina

Published: September 2024

Contrary to its well-established role in declarative learning, the impact of sleep on motor memory consolidation remains a subject of debate. Current literature suggests that while motor skill learning benefits from sleep, consolidation of sensorimotor adaptation (SMA) depends solely on the passage of time. This has led to the proposal that SMA may be an exception to other types of memories. Here, we addressed this ongoing controversy in humans through three comprehensive experiments using the visuomotor adaptation paradigm ( = 290, 150 females). In Experiment 1, we investigated the impact of sleep on memory retention when the temporal gap between training and sleep was not controlled. In line with the previous literature, we found that memory consolidates with the passage of time. In Experiment 2, we used an anterograde interference protocol to determine the time window during which SMA memory is most fragile and, thus, potentially most sensitive to sleep intervention. Our results show that memory is most vulnerable during the initial hour post-training. Building on this insight, in Experiment 3, we investigated the impact of sleep when it coincided with the critical first hour of memory consolidation. This manipulation unveiled a benefit of sleep (30% memory enhancement) alongside an increase in spindle density and spindle-SO coupling during NREM sleep, two well-established neural markers of sleep consolidation. Our findings reconcile seemingly conflicting perspectives on the active role of sleep in motor learning and point to common mechanisms at the basis of memory formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376339PMC
http://dx.doi.org/10.1523/JNEUROSCI.0325-24.2024DOI Listing

Publication Analysis

Top Keywords

sleep consolidation
12
impact sleep
12
sleep
11
sensorimotor adaptation
8
sleep motor
8
memory
8
memory consolidation
8
passage time
8
experiment investigated
8
investigated impact
8

Similar Publications

Study Objectives: Sleep spindles, defining electroencephalographic oscillations of nonrapid eye movement (NREM) stage 2 sleep (N2), mediate sleep-dependent memory consolidation (SDMC). Spindles are also thought to protect sleep continuity by suppressing thalamocortical sensory relay. Schizophrenia is characterized by spindle deficits and a correlated reduction of SDMC.

View Article and Find Full Text PDF

Background: Sleep is an active process that affects human health and quality of life. Sleep is essential for learning and memory consolidation. Good sleep is required for good academic performance.

View Article and Find Full Text PDF

Background And Objectives: Rolandic epilepsy (RE), the most common childhood focal epilepsy syndrome, is characterized by a transient period of sleep-activated epileptiform activity in the centrotemporal regions and variable cognitive deficits. Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in RE and related sleep-activated epileptic encephalopathies.

View Article and Find Full Text PDF

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

A 23-Year-Old Man With Multilobar Consolidation.

Chest

January 2025

Department of Pulmonary Medicine, Critical Care and Sleep Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India. Electronic address:

A 23-year-old man presented to the ED with a history of respiratory distress, cough, and fever for 10 days. He was evaluated in the ED, where he received a diagnosis of pulmonary edema, secondary to mitral regurgitation with mitral valve prolapse syndrome. He was treated with antibiotics and diuretics and discharged to home.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!