Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study compared the effects of polyethylene glycol (PEG) shielding and mannose-conjugated ligands density on lipid nanoparticles (LNPs) for intracellular uptake to macrophages in vitro and accumulation in spleens in vivo. Fabricated phosphatidyl serine-incorporated LNPs (sLNPs) was physically decorated with mannose-conjugated DSPE-PEG (DPM) at different DPM/LNP molar ratios achieving the DPM density from 0 to 0.6 PEGs/nm. We demonstrated that low PEG shielding sLNPs with mannose ligands (sLNP-DPMs) displayed superior uptake to macrophages (RAW 264.7 cells) compared with high PEG shielding sLNP-DPMs in vitro. However, high PEG shielding sLNP-DPMs showed significant spleen accumulation compared with low PEG shielding sLNP-DPMs in vivo after intravenous injection. In particular, high PEG shielding sLNPs coated with DSPE-methoxyPEG (DP) and DPM mixture at DP/DPM molar ratios of 5/5 exhibited greater accumulation in red pulp of spleens than naked sLNPs by 2.7-folds in vivo. These results suggested that the optimal PEG shielding and mannose densities per a particle might be different between in vitro cellular uptake to macrophages and in vivo spleen accumulation after systemic administration. Taken together, precision-tailored LNP-surface modifications achieved through optimization of PEG shielding and mannose density can greatly enhance accumulation of LNPs in red pulp of spleens, which could be applied for the delivery of nucleic acid-based drugs and vaccines to spleens in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2024.124540 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!