A diverse array of protocols have been established for the directed differentiation of human pluripotent stem cells (hPSCs) into a variety of cell types, including blood cells, for modeling development and disease, and for the development of cell-based therapeutics. These protocols recapitulate various signaling requirements essential for the establishment of the hematopoietic systems during embryonic development. However, in many instances, the functional properties of those progenitors, and their relevance to human development, remains unclear. The human embryo, much like other vertebrate model organisms, generates hematopoietic cells via successive anatomical location- and time-specific waves, each yielding cells with distinct functional and molecular characteristics. Each of these progenitor "waves" is characterized at the time of emergence of the direct hematopoietic progenitor in the vasculature, the hemogenic endothelial cell (HEC). Critically, despite decades of study in model organisms, the origins of each of these HEC populations remain unclear. Fortunately, through the directed differentiation of hPSCs, recent insights have been made into the earliest origins of each HEC population, revealing that each arises from transcriptionally and phenotypically distinct subsets of nascent mesoderm. Here, we outline the protocols to generate each mesodermal and HEC population via the formation of embryoid bodies and subsequent stage-specific signal manipulation. Through implementation of these discrete signal manipulations, it is possible to obtain human HEC populations that are exclusively extraembryonic-like or exclusively intraembryonic-like, enabling comparative developmental biology studies or specific translational applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2024.104587DOI Listing

Publication Analysis

Top Keywords

hemogenic endothelial
8
endothelial cell
8
pluripotent stem
8
stem cells
8
directed differentiation
8
model organisms
8
origins hec
8
hec populations
8
hec population
8
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!