A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of coincidence index in the discovery of co-expressed metabolic pathways. | LitMetric

Analyzing transcription data requires intensive statistical analysis to obtain useful biological information and knowledge. A significant portion of this data is affected by random noise or even noise intrinsic to the modeling of the experiment. Without robust treatment, the data might not be explored thoroughly, and incorrect conclusions could be drawn. Examining the correlation between gene expression profiles is one way bioinformaticians extract information from transcriptomic experiments. However, the correlation measurements traditionally used have worrisome shortcomings that need to be addressed. This paper compares five already published and experimented-with correlation measurements to the newly developed coincidence index, a similarity measurement that combines Jaccard and interiority indexes and generalizes them to be applied to vectors containing real values. We used microarray and RNA-Seq data from the archaeonand the bacterium, respectively, to evaluate the capacity of each correlation/similarity measurement. The utilized method explores the co-expressed metabolic pathways by measuring the correlations between the expression levels of enzymes that share metabolites, represented in the form of a weighted graph. It then searches for local maxima in this graph using a simulated annealing algorithm. We demonstrate that the coincidence index extracts larger, more comprehensive, and more statistically significant pathways for microarray experiments. In RNA-Seq experiments, the results are more limited, but the coincidence index managed the largest percentage of significant components in the graph.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1478-3975/ad68b6DOI Listing

Publication Analysis

Top Keywords

co-expressed metabolic
8
metabolic pathways
8
correlation measurements
8
application coincidence
4
coincidence discovery
4
discovery co-expressed
4
pathways analyzing
4
analyzing transcription
4
data
4
transcription data
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!