Cadmium (Cd) is a hazardous heavy metal known for its detrimental effects on plants, human health, and the environment. This review article delves into the dynamics of Cd uptake, long-distance transport, and its impact on plant performance, with a specific focus on tomato plants. The process of Cd uptake by roots and its subsequent long-distance transport in the xylem and phloem are explored to understand how Cd influences plants operation. The toxic effects of Cd on tomato plants are discussed, highlighting on the challenges it poses to plant growth and development. Furthermore, the review investigates various Cd tolerance mechanisms in plants, including avoidance or exclusion by the root cell wall, root-to-shoot translocation, detoxification pathways, and antioxidative defence systems against Cd-induced stress. In addition, the transcriptomic analyses of tomato plants under Cd stress provide insights into the molecular responses and adaptations of plants to Cd toxicity. Overall, this comprehensive review enhances our understanding of Cd-plant interactions and reveal promising genes for tomato genetic improvement to increase its tolerance to cadmium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2024.108968 | DOI Listing |
Hortic Res
January 2025
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
Sugars act as signaling molecules to modulate various growth processes and enhance plant tolerance to various abiotic and biotic stresses. Moreover, sugars contribute to the postharvest flavor in fleshy fruit crops. To date, the regulation of sugar metabolism and its effect in plant growth, fruit ripening, postharvest quality, and stress resistance remains not fully understood.
View Article and Find Full Text PDFFront Plant Sci
January 2025
School of Life Sciences, East China Normal University, Shanghai, China.
Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
ISPAAM-CNR, Sassari, Italy.
Background: Biowaste accounts for about 40% of total waste. Food-industry waste is one major biowaste stream. The available technological approaches to biowaste treatment are expensive, not circular, unsustainable, and they require pre-treatments such as dehydration, extraction of inhibitors, pH correction, or the addition of other organic matrices.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
Fruits and vegetables offer substantial nutritional and health benefits, but their short shelf life necessitates effective preservation methods. Conventional drying techniques, while efficient, often lead to deterioration in food quality. Recent advancements highlight the potential of infrared blanching (IRB) as a preparatory process to improve drying outcomes.
View Article and Find Full Text PDFEnviron Res
January 2025
Doctorado en Ciencias Ambientales, Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero. Privada de Laurel 13, Col. El Roble, 39640, Acapulco, Guerrero, México; Facultad de Ciencias Agropecuarias y Ambientales, Unidad Tuxpan, Universidad Autónoma de Guerrero. Carretera Iguala-Tuxpan, km 2.5, Iguala de la Independencia, Guerrero, México; Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos. Avenida Universidad 1001, 62210, Cuernavaca, Morelos, México; Laboratorio de Toxicología Ambiental, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, Ciudad de México 04510, México; Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, 47600, Jalisco, México; Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero. Ex-hacienda de San Juan Bautista, Taxco el Viejo, 40323, Taxco el Viejo, Guerrero, México. Electronic address:
This study explored the distribution of macronutrients (Ca, Mg, Na, K) and lithogenic (Ba, Cr, Ni, Mn, Fe) and mining-related (As, Pb, Cd, Cu, Zn) toxic metalloids and metals (TMMs) in tomato (Solanum lycopersicum L.), and its effects on plant development, productivity, genotoxicity, and human health, using a soil affected by mine tailings (AS) and an unaffected control soil (CS). The chemistry of soils reflected their mineralogy, and Fe-Ti oxides, sulfides and sulfosalts were found to be the most significant reservoirs of TMMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!