Purpose: To model relative biological effectiveness (RBE) differences found in two studies which used spread-out Bragg-peaks (SOBP) placed at (a) superficial depth and (b) at the maximum range depth. For pencil beam scanning (PBS), RBE at similar points within the SOBP did not change between the two extreme SOBP placement depths; in passively scattered beams (PSB), high RBE values (typically 1.2-1.3) were found within superficially- placed SOBP but reduced to lower values (1-1.07) at similar points within the extreme-depth positioned SOBP. The dose, LET (linear energy transfer) distributions along each SOBP were closely comparable regardless of placement depth, but significant changes in dose rate occurred with depth in the PSB beam.

Methods: The equations used allow α and β changes with falling dose rate (the converse to FLASH studies) in PSB, resulting in reduced α/β ratios, compatible with a reduction in micro-volumetric energy transfer (the product of Fluence and LET), with commensurate reductions in RBE. The experimental depth-distances, positions within SOBP, observed dose-rates and radiosensitivity ratios were used to estimate the changes in RBE.

Results: RBE values within a 5 % tolerance limit of the experimental results for PSB were found at the deepest SOBP placement. No RBE changes were predicted for PBS beams, as in the published results.

Conclusions: Enhanced proton therapy toxicity might occur with PBS when compared with PSB for deeply positioned SOBP due to the maintenance of higher RBE. Scanned pencil beam users need to be vigilant about RBE and further research is indicated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2024.104488DOI Listing

Publication Analysis

Top Keywords

sobp
10
rbe differences
8
spread-out bragg-peaks
8
bragg-peaks sobp
8
sobp superficial
8
passively scattered
8
scattered beams
8
scanned pencil
8
rbe
8
pencil beam
8

Similar Publications

Background And Purpose: Radiotherapy induces tumor cell killing by generating DNA double strand breaks (DSBs). The effectiveness of radiotherapy is significantly influenced by the repair of DSBs, which counteracts this lethal effect. Current investigations are focused on determining whether non-homologous end joining (NHEJ) or homologous recombination is the predominant repair pathway following proton and photon radiation.

View Article and Find Full Text PDF

Challenges for the Implementation of Primary Standard Dosimetry in Proton Minibeam Radiation Therapy.

Cancers (Basel)

November 2024

Radiotherapy and Radiation Dosimetry, National Physical Laboratory, Teddington TW11 0LW, UK.

Article Synopsis
  • Spatial fractionation of proton fields in cancer treatment improves sparing of healthy tissue while ensuring tumor control.
  • This study demonstrated the use of the National Physical Laboratory's Primary Standard Proton Calorimeter to measure absorbed dose in a proton beam with a specific configuration.
  • Results indicated that uncertainty in absorbed dose measurements was mainly due to positioning accuracy, suggesting that reference dosimetry should focus on measuring Dose-Area Product or using SOBP for more reliable outcomes in spatially fractionated fields.
View Article and Find Full Text PDF

The proton RBE and the distal edge effect for acute and late normal tissue damage in vivo.

Radiother Oncol

December 2024

Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark.

Background And Purpose: In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used toreach an isoeffective biological response between photon and proton doses. However, the RBE varies with biological endpoints and linear energy transfer (LET), two key parameters in radiotherapy.

View Article and Find Full Text PDF

Determination of spread-out Bragg peak (SOBP) inside media other than water is important for research or clinical purposes. Current study aims to characterize the optimal "p" values needed for the simulation of proton SOBP inside some dosimetry media using MCNPX Monte Carlo code. Following the provided data by ICRU-49 and applying the Bortfeld and Jette recommendations, the "p" values were determined for muscle, compact bone, and PMMA.

View Article and Find Full Text PDF

Purpose: In order to study the FLASH effect using live models, this work compared proton-induced damage to embryos (nine days after fertilization) and one-day-old chicks (18 days after fertilization) from irradiated at different dose rates eggs of Japanese quail ().

Materials And Methods: Eggs were irradiated with protons in different modes depending on the dose rate: in a conventional mode (<1 Gy/s, CONV), in a flash mode (∼100 Gy/s, FLASH) and in a single-pulse flash mode (∼10 Gy/s SPLASH).

Results: By the criteria of body weight and length, as well as the number of erythrocytes with micronuclei in nine-day-old embryos from eggs irradiated in the spread-out Bragg peak (SOBP) (8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!