Nitrate contamination of water resources poses significant health and environmental risks, necessitating efficient denitrification methods that produce ammonia as a desirable product. The electrocatalytic nitrate reduction reaction (NORR) powered by renewable energy offers a promising solution, however, developing highly active and selective catalysts remains challenging. Single-atom catalysts (SACs) have shown impressive performance, but the crucial role of their coordination environment, especially the next-nearest neighbor dopant atoms, in modulating catalytic activity for NORR is underexplored. This study aims to optimize the NORR performance of tungsten (W) single atoms anchored on graphene by precisely engineering their coordination environment through first and next-nearest neighbor dopants. The stability, reaction paths, activity, and selectivity of 43 different nitrogen and boron doping configurations were systematically studied using density functional theory. The results reveal W@C, with W coordinated to three carbon atoms, exhibits outstanding NORR activity with a low limiting potential of -0.36 V. Intriguingly, introducing next-nearest neighbor B and N dopants further enhances the performance, with W@C-BN achieving a lower limiting potential of -0.26 V. This exceptional activity originates from optimal nitrate adsorption strengths facilitated by orbital hybridization and charge modulation effects induced by the dopants. Furthermore, high energy barriers for NO and NO formation on W@C and W@C-BN ensure their selectivity towards NORR products. These findings provide crucial atomic-level insights into rational design strategies for high-performance single-atom NORR catalysts via coordination environment engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.07.134 | DOI Listing |
J Am Chem Soc
January 2025
School of Energy and Environment, Southeast University, Nanjing 210096, China.
The broad temperature adaptability associated with the desolvation process remains a formidable challenge for organic electrolytes in rechargeable metal batteries, especially under low-temperature (LT) conditions. Although a traditional approach involves utilizing electrolytes with a high degree of anion participation in the solvation structure, known as weakly solvation electrolytes (WSEs), the solvation structure of these electrolytes is highly susceptible to temperature fluctuations, potentially undermining their LT performance. To address this limitation, we have devised an innovative electrolyte that harnesses the interplay between solvent molecules, effectively blending strong and weak solvents while incorporating anion participation in a solvation structure that remains mostly unchanged by temperature variations.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
In the search for new ultraviolet (UV) nonlinear optical (NLO) materials, two novel cadmium mixed halide compounds, (NH)CdClF and (NH)CdBrF, are successfully synthesized via hydrothermal methods. These compounds crystallize in the noncentrosymmetric (NCS) space group, R32, and are composed of distorted octahedral [CdXF] (X═Cl or Br) units, which extend into a 3D framework. Remarkably, both compounds demonstrate strong second-harmonic generation (SHG) efficiencies-3.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, School of the Environment, State Key Laboratory of Pollution Control & Resource Reuse, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
The escalating global fecal waste and rising CO levels present dual significant environmental challenges, further intensified by urbanization. Traditional fecal waste management methods are insufficient, particularly in addressing the related health risks and environmental threats. This study explores the synthesis of biochar from pig manure as a carbon substrate to disperse and stabilize Cu nanoparticles, resulting in the formation of an efficient Cu-NB-2000 electrocatalyst for electrocatalytic CO reduction (ECR).
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Global Tuberculosis Program, William T. Shearer Center for Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.
Background: The BCG vaccine induces trained immunity, an epigenetic-mediated increase in innate immune responsiveness. Therefore, this clinical trial evaluated if BCG-induced trained immunity could decrease coronavirus disease 2019 (COVID-19)-related frequency or severity.
Methods: A double-blind, placebo-controlled clinical trial of healthcare workers randomized participants to vaccination with BCG TICE or placebo (saline).
Cureus
December 2024
Faculty of Medical Sciences, The University of the West Indies, St. Augustine, TTO.
A 38-year-old paint technician who worked rotating shifts reported mild sleep disruptions and increased fatigue. The company's medical staff reviewed his work patterns, rest habits, and home environment. They introduced a personalized sleep hygiene program and adjusted his break schedule, allowing short, structured rest periods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!