A phased small interfering RNA-derived pathway mediates lead stress tolerance in maize.

Plant Physiol

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.

Published: October 2024

Phased small interfering RNAs (phasiRNAs) are a distinct class of endogenous small interfering RNAs, which regulate plant growth, development, and environmental stress response. To determine the effect of phasiRNAs on maize (Zea mays L.) tolerance to lead (Pb) stress, the roots of 305 maize lines under Pb treatment were subjected to generation of individual databases of small RNAs. We identified 55 high-confidence phasiRNAs derived from 13 PHAS genes (genes producing phasiRNAs) in this maize panel, of which 41 derived from 9 PHAS loci were negatively correlated with Pb content in the roots. The potential targets of the 41 phasiRNAs were enriched in ion transport and import. Only the expression of PHAS_1 (ZmTAS3j, Trans-Acting Short Interference RNA3) was regulated by its cis-expression quantitative trait locus and thus affected the Pb content in the roots. Using the Nicotiana benthamiana transient expression system, 5'-rapid amplification of cDNA ends, and Arabidopsis heterologously expressed, we verified that ZmTAS3j was cleaved by zma-miR390 and thus generated tasiRNA targeting ARF genes (tasiARFs), and that the 5' and 3' zma-miR390 target sites of ZmTAS3j were both necessary for efficient biosynthesis and functional integrity of tasiARFs. We validated the involvement of the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-ZmHMA3 pathway in Pb accumulation in maize seedlings using genetic, molecular, and cytological methods. Moreover, the increased Pb tolerance in ZmTAS3j-overexpressed lines was likely attributed to the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-SAURs pathway, which elevated indole acetic acid levels and thus reactive oxygen species-scavenging capacity in maize roots. Our study reveals the importance of the TAS3-derived tasiRNA pathway in plant adaptation to Pb stress.

Download full-text PDF

Source
http://dx.doi.org/10.1093/plphys/kiae397DOI Listing

Publication Analysis

Top Keywords

small interfering
12
phased small
8
lead stress
8
interfering rnas
8
phasirnas maize
8
derived phas
8
content roots
8
maize
6
phasirnas
5
interfering rna-derived
4

Similar Publications

Full-length hepatitis B virus (HBV) transcripts of chimpanzees and patients treated with multidose (MD) HBV siRNA ARC-520 and entecavir (ETV) were characterized by single-molecule real-time (SMRT) sequencing, identifying multiple types of transcripts with the potential to encode HBx, HBsAg, HBeAg, core, and polymerase, as well as transcripts likely to be derived from dimers of dslDNA, and these differed between HBeAg-positive (HBeAg+) and HBeAg-negative (HBeAg-) individuals. HBV transcripts from the last follow-up ~30 months post-ARC-520 treatment were categorized from one HBeAg+ (one of two previously highly viremic patients that became HBeAg- upon treatment and had greatly reduced cccDNA products) and four HBeAg- patients. The previously HBeAg+ patient received a biopsy that revealed that he had 3.

View Article and Find Full Text PDF

Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on multiple infections and other stresses, there is an urgent need for fast screening tests to evaluate resistance/tolerance traits in sugar beet accessions. To address this issue, we exploited the virus-induced gene silencing (VIGS) system, by introducing a fragment of a gene involved in chlorophyll synthesis in the BMYV genome.

View Article and Find Full Text PDF

Importance of Fecal Microbiota Transplantation and Molecular Regulation as Therapeutic Strategies in Inflammatory Bowel Diseases.

Nutrients

December 2024

Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania.

Noncoding RNAs, particularly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have emerged as key players in the pathogenesis and therapeutic strategies for inflammatory bowel disease (IBD). MiRNAs, small endogenous RNA molecules that silence target mRNAs to regulate gene expression, are closely linked to immune responses and inflammatory pathways in IBD. Notably, miR-21, miR-146a, and miR-155 are consistently upregulated in IBD, influencing immune cell modulation, cytokine production, and the intestinal epithelial barrier.

View Article and Find Full Text PDF

Ovarian cancer is the deadliest gynecologic cancer, and with the majority of patients dying within the first five years of diagnosis, new therapeutic options are required. The small guanosine triphosphatase (GTPase) Ras-related nuclear protein (Ran) has been reported to be highly expressed in high-grade serous ovarian cancers (HGSOCs) and associated with poor outcomes. Blocking Ran function or preventing its expression were shown to be promising treatment strategies, however, there are currently no small molecule inhibitors available to specifically inhibit Ran function.

View Article and Find Full Text PDF

Hepatitis E virus (HEV) exists in two distinct forms: a non-enveloped form (neHEV), which is present in feces and bile, and a quasi-enveloped form (eHEV), found in circulating blood and culture supernatants. This study aimed to elucidate the roles of Ras-associated binding 13 (Rab13) and protein kinase A (PKA) in the entry mechanisms of both eHEV and neHEV, utilizing small interfering RNA (siRNA) and chemical inhibitors. The results demonstrated that the entry of both viral forms is dependent on Rab13 and PKA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!