A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A hybrid model for predicting response to risperidone after first episode of psychosis. | LitMetric

AI Article Synopsis

  • Patient responses to antipsychotic drugs like risperidone vary due to clinical and genetic differences, and researchers studied ways to predict these responses in first-episode psychosis (FEP) patients.
  • The study involved 141 FEP patients who were evaluated before and after 10 weeks of treatment, with 51% considered responders based on their improvement on a specific scale.
  • Among the prediction models tested, hybrid models that combined clinical and genetic factors performed best, achieving a balanced accuracy of 72.9%, suggesting these models could improve treatment outcomes.

Article Abstract

Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We evaluated 141 antipsychotic-naïve FEP patients before and after 10 weeks of risperidone treatment. Patients who had a response rate equal to or higher than 50% on the Positive and Negative Syndrome Scale were considered responders (n = 72; 51%). Analyses were performed using a support vector machine (SVM), k-nearest neighbors (kNN), and random forests (RF). Clinical and genetic (with single-nucleotide variants [SNVs]) models were created separately. Hybrid models (clinical+genetic factors) with and without feature selection were created. Clinical models presented greater balanced accuracy 63.3% (confidence interval [CI] 0.46-0.69) with the SVM algorithm than the genetic models (balanced accuracy: 58.5% [CI 0.41-0.76] - kNN algorithm). The hybrid model, which included duration of untreated psychosis, Clinical Global Impression-Severity scale scores, age, cannabis use, and 406 SNVs, showed the best performance (balanced accuracy: 72.9% [CI 0.62-0.84] - RF algorithm). A hybrid model, including clinical and genetic predictors, can provide enhanced predictions of response to antipsychotic treatment.

Download full-text PDF

Source
http://dx.doi.org/10.47626/1516-4446-2024-3608DOI Listing

Publication Analysis

Top Keywords

clinical genetic
16
hybrid model
12
balanced accuracy
12
episode psychosis
8
response antipsychotic
8
hybrid models
8
fep patients
8
algorithm hybrid
8
clinical
6
hybrid
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!