A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structure and Intensity Unbiased Translation for 2D Medical Image Segmentation. | LitMetric

Data distribution gaps often pose significant challenges to the use of deep segmentation models. However, retraining models for each distribution is expensive and time-consuming. In clinical contexts, device-embedded algorithms and networks, typically unretrainable and unaccessable post-manufacture, exacerbate this issue. Generative translation methods offer a solution to mitigate the gap by transferring data across domains. However, existing methods mainly focus on intensity distributions while ignoring the gaps due to structure disparities. In this paper, we formulate a new image-to-image translation task to reduce structural gaps. We propose a simple, yet powerful Structure-Unbiased Adversarial (SUA) network which accounts for both intensity and structural differences between the training and test sets for segmentation. It consists of a spatial transformation block followed by an intensity distribution rendering module. The spatial transformation block is proposed to reduce the structural gaps between the two images. The intensity distribution rendering module then renders the deformed structure to an image with the target intensity distribution. Experimental results show that the proposed SUA method has the capability to transfer both intensity distribution and structural content between multiple pairs of datasets and is superior to prior arts in closing the gaps for improving segmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2024.3434435DOI Listing

Publication Analysis

Top Keywords

intensity distribution
16
reduce structural
8
structural gaps
8
spatial transformation
8
transformation block
8
distribution rendering
8
rendering module
8
distribution
6
intensity
6
gaps
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!