Turbulence in stratified and rotating turbulent flows is characterized by an interplay between waves and eddies, resulting in continuous exchanges between potential and kinetic energy. Here, we study how these processes affect the turbulent energy cascade from large to small scales, which manifests itself by an irreversible evolution of the relative kinetic energy between two tracer particles. We find that when r_{0}, the separation between particles, is below a characteristic length ℓ_{t}, potential energy is on average transferred to kinetic energy, reducing time irreversibility, and conversely when r_{0}>ℓ_{t}. Our Letter reveals that the scale ℓ_{t} coincides with the buoyancy length scale L_{B} over a broad range of configurations until a transition to a wave-dominated regime is reached.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.024101 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xìan, Shaanxi 710049, China.
Prussian blue analogues (PBAs) show great promise as cathode candidates for aqueous zinc-ion batteries thanks to their high operating voltage, open-framework structure, and low cost. However, suffering from numerous vacancies and crystal water, the electrochemical performance of PBAs remains unsatisfactory, with limited capacity and poor cycle life. Here, a simple coprecipitation method is shown to synthesize well-crystallized cobalt hexacyanoferrate (CoHCF) with a small amount of water and high specific surface area.
View Article and Find Full Text PDFPhotosynth Res
January 2025
School of Biological Sciences, Washington State University, 406 Abelson Hall, Pullman, WA, 99164, USA.
Phosphoenolpyruvate (PEP) carboxylase (PEPC) has an anaplerotic role in central plant metabolism but also initiates the carbon concentrating mechanism during C photosynthesis. The C PEPC has different binding affinities (K) for PEP (K) and HCO (K), and allosteric regulation by glucose-6-phosphate (G6-P) compared to non-photosynthetic isoforms. These differences are linked to specific changes in amino acids within PEPC.
View Article and Find Full Text PDFChemphyschem
January 2025
University of Namur, Department of Chemistry, Rue de Bruxelles, 61, 5000, Namur, BELGIUM.
The [4+2] Diels-Alder cycloaddition reaction between 2,5-DMF (1) and ethylene derivatives (2a-h) activated by electron-withdrawing groups has been studied at the density functional theory levels using a panoply of tools to unravel the reaction mechanisms. From the analysis of the reactivity indices, 2a-h behave as electrophiles while 1 as nucleophile, and the activation of the double bond of ethylene increases its electrophilicity, which is accompanied by an enhancement of the polarity of the reaction. The activation Gibbs free energy decreases linearly as a function of this increase of polarity, as estimated by the electrophilicity difference between the reactants.
View Article and Find Full Text PDFNano Lett
January 2025
Advanced Energy Storage Technology and Equipment Research Institute, Ningbo University, Ningbo, Zhejiang 315211, China.
Plateau-dominated hard carbon with a high rate of performance is challenging to obtain, and the in-depth mechanism of pore structure on the diffusion of sodium ions remains unclear. In this study, a facile liquid-phase molecular reconstruction strategy is proposed to regulate the orientation of the β-cyclodextrin molecules and prepare spherical hard carbon with continuous and ordered pore channels. Through detailed characterization, this approach is confirmed to optimize the accumulation of Na in the dispersion region, thus improving the plateau kinetics and enhancing the utilization of closed pores.
View Article and Find Full Text PDFChem Asian J
January 2025
East China University of Science and Technology, School of Materials Science and Engineering, 130# Meilong Road, Shanghai, 200237, Shanghai, CHINA.
Li-ion capacitors (LICs) integrate the desirable features of lithium-ion batteries (LIBs) and supercapacitors (SCs), but the kinetic imbalance between the both electrodes leads to inferior electrochemical performance. Thus, constructing an advanced anode with outstanding rate capability and terrific redox kinetics is crucial to LICs. Herein, heterostructured ZnS/SnS2 nanosheets encapsulated into N-doped carbon microcubes (ZnS/SnS2@NC) are successfully fabricated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!