New Classes of Magnetic Noise Self-Compensation Effects in Atomic Comagnetometer.

Phys Rev Lett

CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.

Published: July 2024

Precision measurements of anomalous spin-dependent interactions are often hindered by magnetic noise and other magnetic systematic effects. Atomic comagnetometers use the distinct spin precession of two species and have emerged as important tools for effectively mitigating the magnetic noise. Nevertheless, the operation of existing comagnetometers is limited to very low-frequency noise commonly below 1 Hz. Here, we report a new type of atomic comagnetometer based on a magnetic noise self-compensation mechanism originating from the destructive interference between alkali-metal and noble-gas spins. Our comagnetometer employing K-^{3}He system remarkably suppresses magnetic noise exceeding 2 orders of magnitude at higher frequencies up to 160 Hz. Moreover, we discover that the capability of our comagnetometer to suppress magnetic noise is spatially dependent on the orientation of the noise and can be conveniently controlled by adjusting the applied bias magnetic field. Our findings open up new possibilities for precision measurements, including enhancing the search sensitivity of spin-dark matter particles interactions into unexplored parameter space.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.023202DOI Listing

Publication Analysis

Top Keywords

magnetic noise
24
noise
8
noise self-compensation
8
effects atomic
8
atomic comagnetometer
8
precision measurements
8
magnetic
7
classes magnetic
4
self-compensation effects
4
comagnetometer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!