Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dry granular materials consist of a vast ensemble of discrete solid particles interacting through complex frictional forces at the contact points. The particles are so large that these systems are believed to be completely athermal. Here, we arrest the dynamics of a flowing granular material in a steady-state-flow configuration, enabling an isolated examination of aging at the particle contacts without granular rearrangements. Our findings reveal that the evolution of interparticle forces within the arrested athermal granular network results in the spontaneous increase of the system's yield stress. This strengthening process is logarithmic in time with a rate that depends on the temperature. We demonstrate that the material's stress relaxation exhibits similar time- and temperature-dependent behavior, suggesting a shared origin for aging and stress relaxation in these systems governed by thermal molecular processes at the scale of the grain contacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.028203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!