A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Group Theory on Quasisymmetry and Protected Near Degeneracy. | LitMetric

Group Theory on Quasisymmetry and Protected Near Degeneracy.

Phys Rev Lett

Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, China.

Published: July 2024

In solid state systems, group representation theory is powerful in characterizing the behavior of quasiparticles, notably the energy degeneracy. While conventional group theory is effective in answering yes-or-no questions related to symmetry breaking, its application to determining the magnitude of energy splitting resulting from symmetry lowering is limited. Here, we propose a theory on quasisymmetry and near degeneracy, thereby expanding the applicability of group theory to address questions regarding large-or-small energy splitting. Defined within the degenerate subspace of an unperturbed Hamiltonian, quasisymmetries form an enlarged symmetry group eliminating the first-order splitting. This framework ensures that the magnitude of splitting arises as a second-order effect of symmetry-lowering perturbations, such as external fields and spin-orbit coupling. We systematically tabulate the quasisymmetry groups within 32 crystallographic point groups and find all the possible unitary quasisymmetry group structures regarding double degeneracy. Applying our theory to the realistic material AgLa, we predict a "quasi-Dirac semimetal" phase characterized by two tiny-gap band anticrossings.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.026402DOI Listing

Publication Analysis

Top Keywords

group theory
12
theory quasisymmetry
8
energy splitting
8
group
6
theory
5
quasisymmetry
4
quasisymmetry protected
4
degeneracy
4
protected degeneracy
4
degeneracy solid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!