Molecular docking (MD) is a crucial task in drug design, which predicts the position, orientation, and conformation of the ligand when it is bound to a target protein. It can be interpreted as a combinatorial optimization problem, where quantum annealing (QA) has shown a promising advantage for solving combinatorial optimization. In this work, we propose a novel quantum molecular docking (QMD) approach based on a QA-inspired algorithm. We construct two binary encoding methods to efficiently discretize the degrees of freedom with an exponentially reduced number of bits and propose a smoothing filter to rescale the rugged objective function. We propose a new quantum-inspired algorithm, hopscotch simulated bifurcation (hSB), showing great advantages in optimizing over extremely rugged energy landscapes. This hSB can be applied to any formulation of an objective function under binary variables. An adaptive local continuous search is also introduced for further optimization of the discretized solution from hSB. Concerning the stability of docking, we propose a perturbation detection method to help rank the candidate poses. We demonstrate our approach on a typical data set. QMD has shown advantages over the search-based Autodock Vina and the deep-learning DIFFDOCK in both redocking and self-docking scenarios. These results indicate that quantum-inspired algorithms can be applied to solve practical problems in drug discovery even before quantum hardware become mature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00141DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
quantum molecular
8
quantum-inspired algorithm
8
combinatorial optimization
8
objective function
8
quantum
4
docking
4
docking quantum-inspired
4
algorithm molecular
4
docking crucial
4

Similar Publications

Antarctic organisms are known for producing unique secondary metabolites, and this study specifically focuses on the less-explored metabolites of the moss Warnstorfia fontinaliopsis. To evaluate their potential bioactivity, we extracted secondary metabolites using four different solvents and identified significant lipase inhibitory activity in the methanol extract. Non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on this extract predicted the presence of 12 compounds, including several not previously reported in mosses.

View Article and Find Full Text PDF

GraphkmerDTA: integrating local sequence patterns and topological information for drug-target binding affinity prediction and applications in multi-target anti-Alzheimer's drug discovery.

Mol Divers

January 2025

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.

Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise.

View Article and Find Full Text PDF

Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.

View Article and Find Full Text PDF

Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.

View Article and Find Full Text PDF

Three compounds, including a novel quinolizidine alkaloid, ochrocephalamine G (), were isolated from . Structural elucidation was achieved through spectroscopic analysis and electronic circular dichroism. Biological assays showed that ochrocephalamine G (100 μM) inhibited HBsAg and HBeAg by 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!