A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

KLD: a program to elucidate the localization of the Fermi and Coulomb holes in molecular systems. | LitMetric

KLD: a program to elucidate the localization of the Fermi and Coulomb holes in molecular systems.

J Mol Model

Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT-USFQ), Universidad San Francisco de Quito (USFQ), Diego de Robles S/N y Vía Interoceánica, Quito, 170901, Ecuador.

Published: July 2024

AI Article Synopsis

  • The concept of electron localization helps scientists understand electronic systems' properties by observing how electron pairs behave, especially their responses to external factors.
  • The KLD program was developed to analyze electron localization in molecular systems by evaluating electron-pair density functions, and it offers improved resolution compared to existing methods.
  • KLD is designed for ease of use and efficiency, employing modern software principles and leveraging GPU computational power through CUDA for faster calculations and reduced errors.

Article Abstract

Context: The electron localization is a concept that allows scientists to better understand the physical and chemical properties of electronic systems. It is associated with the propensity of electron pairs with opposite spins to accumulate as well as with their response to external perturbations. This paper contains a detailed description of the design and implementation of the program KLD, which was primarily developed in our research group to elucidate electron localization in molecular systems by evaluating the information content of electron-pair density functions. KLD employs two information-based functions as a real space measure of the Fermi and Coulomb holes for same-spin electrons and shows a better resolution as compared to other methods (i.e., ELF). Information about the acceleration of the code is also included in the present work, being noticeable the reduction of wall-time calculation and the error calculation between versions.

Methods: KLD was designed to be easy to use, extend, and maintain; thus, many principles of modern software development, extensive testing, and package management were adopted. The latest version of the KLD program was created utilizing the Compute Unified Device Architecture (CUDA) version, which allows it to use the computational capacity of NVIDIA Graphics Processing Units (GPUs) for processing purposes. The electron-pair conditional density was calculated from the canonical molecular orbitals obtained at the HF/6-31G(2df,p) level, or alternatively the natural orbitals in the case of explicit correlated wavefunctions computed at the MP2/6-31G(2df,p)//HF/6-31G(2df,p) level.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-024-06070-4DOI Listing

Publication Analysis

Top Keywords

kld program
8
fermi coulomb
8
coulomb holes
8
molecular systems
8
electron localization
8
kld
5
program elucidate
4
elucidate localization
4
localization fermi
4
holes molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!