Theranostic dye entrapped in an optimized blended-polymer matrix for effective photodynamic inactivation of diseased cells.

Naunyn Schmiedebergs Arch Pharmacol

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India.

Published: July 2024

Despite the wide range of treatment options available for cancer therapy, including chemotherapy, radiation therapy, and surgical procedures, each of these treatments has a different side-effect profile and leaves the patient with no option but to choose. Due to their insensitivity and nonspecificity, conventional treatments damage normal cells together with cancer cells. In recent years, a significant amount of attention has been focused on photodynamic therapy (PDT) as a treatment for cancer and drug-resistant microbes. An activated photosensitizer is used as a part of the procedure along with oxygen molecules and a specific wavelength of light belonging to the visible or NIR spectral zone. A light-sensitive laser dye, rhodamine 6G (R6G), was used in the present study as a photosensitizer, taking a challenge to improve the aqueous solubility and ROS quantum yield using optimum concentration (160 mg/ml) of chitosan-alginate (Cs-Alg) blended polymeric nanoformulations. As evidenced by steady-state spectrophotometric and fluorometric measurements, ROS quantum yield increases three-fold over aqueous solution along with solubility gaining that was validated by PDT experiment using human epithelial carcinoma (KB) cell line. Phantom optical imaging was taken using the IVIS imaging system to establish the formulations as a fluorescence-based optical contrast agent, and zebrafish embryos were used to establish their safe in vivo use. The release profile of R6G was fitted using kinetic models, which followed the Non-Fickian kinetic profile. In conclusion, we recommend the formulations as a potential theranostic agent that will aid in PDT-based therapy in conjunction with optical imaging-based diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-024-03321-2DOI Listing

Publication Analysis

Top Keywords

ros quantum
8
quantum yield
8
theranostic dye
4
dye entrapped
4
entrapped optimized
4
optimized blended-polymer
4
blended-polymer matrix
4
matrix effective
4
effective photodynamic
4
photodynamic inactivation
4

Similar Publications

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

Integration of Copper Toxicity Mechanisms in : Advancing Insights at Environmentally Relevant Concentrations.

Toxics

December 2024

Bioengineering Laboratory, ISEP, Polytechnic of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.

This work aimed to characterize the impact of copper (Cu), at environmentally relevant concentrations, using the freshwater microalga . Algae were incubated with 33 or 53 µg/L Cu, in OECD medium, and toxic impacts were evaluated over 72 h, using different cellular and biochemical biomarkers. The exposure to 33 µg/L Cu had an algistatic effect: slowing growth and reducing algal population (53%, at 72 h) without compromising the cell membrane.

View Article and Find Full Text PDF

The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.

View Article and Find Full Text PDF

Photosensitization has a wide range of applications in vastly distant fields. Three key components must be present at the same time to trigger the related photodynamic effect: light, the photosensitizer (PS) and oxygen. Irradiating the sensitizer leads to the formation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

With the unique photo-physical properties and strong bio-compatibility. Quantum dots (QDs) have sparked interest in biomedical fields such as imaging, biosensing and therapeutics. However, the low stability and insufficient tumor specificity have largely constrained their potential biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!