A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of severe acute pediatric asthma phenotypes using unsupervised machine learning. | LitMetric

Rationale: More targeted management of severe acute pediatric asthma could improve clinical outcomes.

Objectives: To identify distinct clinical phenotypes of severe acute pediatric asthma using variables obtained in the first 12 h of hospitalization.

Methods: We conducted a retrospective cohort study in a quaternary care children's hospital from 2014 to 2022. Encounters for children ages 2-18 years admitted to the hospital for asthma were included. We used consensus k means clustering with patient demographics, vital signs, diagnostics, and laboratory data obtained in the first 12 h of hospitalization.

Measurements And Main Results: The study population included 683 encounters divided into derivation (80%) and validation (20%) sets, and two distinct clusters were identified. Compared to Cluster 1 in the derivation set, Cluster 2 encounters (177 [32%]) were older (11 years [8; 14] vs. 5 years [3; 8]; p < .01) and more commonly males (63% vs. 53%; p = .03) of Black race (51% vs. 40%; p = .03) with non-Hispanic ethnicity (96% vs. 84%; p < .01). Cluster 2 encounters had smaller improvements in vital signs at 12-h including percent change in heart rate (-1.7 [-11.7; 12.7] vs. -7.8 [-18.5; 1.7]; p < .01), and respiratory rate (0.0 [-20.0; 22.2] vs. -11.4 [-27.3; 9.0]; p < .01). Encounters in Cluster 2 had lower percentages of neutrophils (70.0 [55.0; 83.0] vs. 85.0 [77.0; 90.0]; p < .01) and higher percentages of lymphocytes (17.0 [8.0; 32.0] vs. 9.0 [5.3; 14.0]; p < .01). Cluster 2 encounters had higher rates of invasive mechanical ventilation (23% vs. 5%; p < .01), longer hospital length of stay (4.5 [2.6; 8.8] vs. 2.9 [2.0; 4.3]; p < .01), and a higher mortality rate (7.3% vs. 0.0%; p < .01). The predicted cluster assignments in the validation set shared the same ratio (~2:1), and many of the same characteristics.

Conclusions: We identified two clinical phenotypes of severe acute pediatric asthma which exhibited distinct clinical features and outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601023PMC
http://dx.doi.org/10.1002/ppul.27197DOI Listing

Publication Analysis

Top Keywords

severe acute
12
acute pediatric
12
pediatric asthma
12
identification severe
4
asthma
4
asthma phenotypes
4
phenotypes unsupervised
4
unsupervised machine
4
machine learning
4
learning rationale
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!