A chemical modification of cellulose diacetate by phthalate and nitrate was performed to increase solubility in organic solvents and change the electrical properties. The role of substituents on the conductivity, permittivity, and polarizability of cellulose films is revealed. It has been shown that highly porous micro particles can be obtained from cellulose derivatives by a simple and technological freeze-drying method. The resulting micro sized aerogels have a predominantly spherical morphology and amorphous structure. Suspensions of porous particles of nitro- and phthalylated cellulose derivatives in silicone oil have an increased dielectric permittivity compared to cellulose diacetate particles. Produced particles are novel promising material with tunable electrical properties for advanced applications in composites, including for electrorheological fluids.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202400375DOI Listing

Publication Analysis

Top Keywords

cellulose derivatives
12
highly porous
8
porous particles
8
particles cellulose
8
advanced applications
8
cellulose diacetate
8
electrical properties
8
cellulose
6
particles
5
derivatives advanced
4

Similar Publications

Chirality plays a crucial role in the pharmacological activity of triazoles, a key scaffold in antifungal agents and various therapeutic applications. This study focuses on optimizing the enantiomeric resolution of chiral triazoles using supercritical fluid chromatography (SFC) and 10 different columns, either immobilized or coated, chlorinated or nonchlorinated, cellulose or amylose-based chiral stationary phases (CSPs). Four novel triazoles and two marketed ones (tebuconazole and hexaconazole) were separated to determine optimal resolution conditions.

View Article and Find Full Text PDF

Cellulose-based photo-curable chiral nematic ink for direct-ink-writing 3D printing.

Carbohydr Polym

March 2025

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

3D printing technology is one of the most promising strategies for constructing topological functional materials. The development of functional inks is a core issue in the technical development of 3D printing technology. In this study, we engineered photonic crystal inks based on chiral nematic liquid crystals of cellulose derivative, i.

View Article and Find Full Text PDF

Bacterial cellulose-based scaffold modified with anti-CD29 antibody to selectively capture urine-derived stem cells for bladder repair.

Carbohydr Polym

March 2025

Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China. Electronic address:

Acellular cellulose-based biomaterials hold promising potential for treating bladder injuries. However, the compromised cellular state surrounding the wound impedes the complete reconstruction of the bladder. This necessitates the development of a bio-instructive cellulose-based biomaterial that actively controls cell behavior to facilitate effective bladder regeneration.

View Article and Find Full Text PDF

We investigate the effects of water-processable celluloses on the charge-transport properties in the conducting polymer composites and their solid-state organic electrochemical transistors (OECTs). Water-soluble methyl cellulose (MC) and water-dispersible cellulose nanofiber (CNF) are blended with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in solution and used as a conductive channel. Both cellulose-PEDOT:PSS composites show fibrillar structures in thin films with respective dimensions of cellulose.

View Article and Find Full Text PDF

In the present study, the stability of a supersaturated solution of indomethacin (IM) was evaluated in hydrophobically modified hydroxypropylmethylcellulose (HM-HPMC) solutions, with and without parent cyclodextrins (CDs). A highly supersaturated state of IM was maintained in the HM-HPMC solution and was further stabilized by the addition of α-CD and β-CD. Notably, the highest level of supersaturation was achieved in HM-HPMC/α-CD solution, which maintained a high concentration of IM for up to 120 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!