Surface modification plays a crucial role in enhancing the functionality of implanted interventional medical devices, offering added advantages to patients, particularly in terms of lubrication and prevention of undesired adsorption of biomolecules and microorganisms, such as proteins and bacteria, on the material surfaces. Utilizing polymer brushes for surface modification is currently a promising approach to maintaining the inherent properties of materials while introducing new functionalities to surfaces. Here, surface-initiated atom transfer radical polymerization (SI-ATRP) technology to effectively graft anionic, cationic, and neutral polymer brushes from a mixed silane initiating layer is employed. The presence of a polymer brush layer significantly enhances the lubrication performance of the substrates and ensures a consistently low coefficient of friction over thousands of friction cycles in aqueous environments. The antimicrobial efficacy of polymer brushes is evaluated against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli). It is observed that polym er brushes grafted to diverse substrate surfaces displays notable antibacterial properties, effectively inhibiting bacterial attachment. Furthermore, the polymer brush layer shows favorable biocompatibility and anti-inflammatory characteristics, which shows potential applications in dental materials, and other fields such as catheters and food packaging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202400194DOI Listing

Publication Analysis

Top Keywords

polymer brush
12
polymer brushes
12
dental materials
8
surface modification
8
brush layer
8
polymer
6
mechanically stable
4
stable biocompatible
4
biocompatible polymer
4
brush coated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!