In recent years, negative pressure wound dressings have garnered widespread attentions. However, it is challenging to drain the accumulated fluid under negative pressures for hydrogel dressings. To address this issue, this study prepared a chemical/physical duel-network PEG-CMCS/AG/MXene hydrogel composed by chemical disulfide crosslinked network of four-arm polyethylene glycol/carboxymethyl chitosan (4-Arm-PEG-SH/CMCS), and the physical network of hydrogen bond of agar (AG). Under near-infrared light (NIR) irradiation, the PEG-CMCS/AG/MXene hydrogel undergoes photothermal heating due to integrate of MXene, which destructs the hydrogen bond network and allows the removal of exudate through a mechanism mimicking the sweat gland-like effect of skin pores. The photothermal heating effect also enables the antimicrobial activity to prevent wound infections. The excellent electrical conductivity of PEG-CMCS/AG/MXene can promote cell proliferation under the external electrical stimulation (ES) in vitro. The animal experiments of full-thickness skin defect model further demonstrate its ability to accelerate wound healing. The conversion between thioester and thiol achieved with L-cysteine methyl ester hydrochloride (L-CME) can provides the on-demand dissolution of the dressing in situ. This study holds promises to provide a novel solution to the issue of fluid accumulations under hydrogel dressings and offers new approaches to alleviating or avoiding the significant secondary injuries caused by frequent dressing changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423237 | PMC |
http://dx.doi.org/10.1002/advs.202403362 | DOI Listing |
J Control Release
January 2025
CONRAD, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA.
Pre-exposure prophylaxis (PrEP) has emerged as a prominent approach for the prevention of HIV infections. While the latest advances have resulted in effective oral and injectable product options, there are still gaps in on-demand, event-driven, topical products for HIV prevention that are safe and effective. Here we describe the formulation development of a dual-compartment topical insert containing tenofovir alafenamide fumarate (TAF) and elvitegravir (EVG) that may be administered when needed, vaginally or rectally, pre- or post-coitus, for flexible HIV prophylaxis.
View Article and Find Full Text PDFBrain Sci
September 2024
Department of Neurosurgery, University Medical Center Göttingen, 37075 Göttingen, Germany.
Objective: Nimodipine still represents a unique selling point in the prevention of delayed cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH). Its intrathecal effect is limited by a low oral bioavailability, leading to the development of nanocarrier systems to overcome this limitation. This study investigated the ultrasound-induced release profile of nimodipine from drug-loaded copolymers in artificial cerebrospinal fluid (CSF) within 72 h after a singular versus repeated sonication.
View Article and Find Full Text PDFACS Appl Bio Mater
October 2024
Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.
Wound care is a flourishing branch of healthcare wherein a great amount of research is devoted to develop competent wound dressings. Safe, cost-effective, and biocompatible dressings aid in wound healing without inflicting external trauma and subsequent scar formation. Toward this, we have attempted to develop robust wound dressing material with self-healing and antibacterial properties.
View Article and Find Full Text PDFSoft Matter
September 2024
Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
Pickering emulsions are ultra-stable dispersions of two immiscible fluids stabilized by solid or microgel particles rather than molecular surfactants. Although their ultra-stability is a signature performance indicator, often such high stability hinders their demulsification, , prevents the droplet coalescence that is needed for phase separation on demand, or release of the active ingredients encapsulated within droplets and/or to recover the particles themselves, which may be catalysts, for example. This review aims to provide theoretical and experimental insights on demulsification of Pickering emulsions, in particular identifying the mechanisms of particle dislodgment from the interface in biological and non-biological applications.
View Article and Find Full Text PDFNat Commun
August 2024
Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function - dissolving a condensate of interest on demand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!