AI Article Synopsis

  • The study investigates how methanol, ethylene glycol, and glycerol respond to heat from femtosecond laser pulses using a specialized technique called femtosecond laser-induced thermal lens spectroscopy (FTLS).
  • It was found that the response depends heavily on the pump power and the molecular structure of the solvents, with high pump power causing convection currents due to excess heat.
  • The research demonstrates that FTLS is an effective method for understanding how laser power, molecular structure, and hydrogen bonding affect the thermal and optical properties of these alcoholic solvents.

Article Abstract

We explore the photothermal response of methanol, ethylene glycol, and glycerol using the femtosecond laser-induced thermal lens spectroscopy (FTLS) technique. A mode mismatched pump-probe spectroscopic technique was utilized to analyze the influence of localized thermal heating on the photothermal response of solvents. The findings revealed a strong dependence on both the input pump power and the molecular characteristics of the solvents. At significantly high pump power, the excess heat load deposited to the solvent is found to be responsible for the induction of the convection currents in the heat transfer mechanisms. Our results highlight that the influence of pump power on photothermal and thermal lens characteristics is intricately linked to the natural drifting and heat transfer mechanisms of solvent molecules. The molecular motion and existing connective processes were correlated with the molecular characteristics of the samples. The present finding reveals that FTLS is a sensitive probe for comprehending the impact of input laser power, molecular structure, and intermolecular H bonding on the photothermal characteristics and thermo-optical properties of the alcoholic medium.

Download full-text PDF

Source
http://dx.doi.org/10.1111/php.13980DOI Listing

Publication Analysis

Top Keywords

photothermal response
12
thermal lens
12
pump power
12
femtosecond laser-induced
8
laser-induced thermal
8
power molecular
8
molecular characteristics
8
heat transfer
8
transfer mechanisms
8
photothermal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!