Transposable elements as drivers of dedifferentiation: Connections between enhancers in embryonic stem cells, placenta, and cancer.

Bioessays

Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Published: October 2024

Transposable elements (TEs) have emerged as important factors in establishing the cell type-specific gene regulatory networks and evolutionary novelty of embryonic and placental development. Recently, studies on the role of TEs and their dysregulation in cancers have shed light on the transcriptional, transpositional, and regulatory activity of TEs, revealing that the activation of developmental transcriptional programs by TEs may have a role in the dedifferentiation of cancer cells to the progenitor-like cell states. This essay reviews the recent evidence of the cis-regulatory TEs (henceforth crTE) in normal development and malignancy as well as the key transcription factors and regulatory pathways that are implicated in both cell states, and presents existing gaps remaining to be studied, limitations of current technologies, and therapeutic possibilities.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bies.202400059DOI Listing

Publication Analysis

Top Keywords

transposable elements
8
cell states
8
tes
5
elements drivers
4
drivers dedifferentiation
4
dedifferentiation connections
4
connections enhancers
4
enhancers embryonic
4
embryonic stem
4
stem cells
4

Similar Publications

Genetic and species rearrangements in microbial consortia impact biodegradation potential.

ISME J

January 2025

Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain.

Genomic reorganisation between species and horizontal gene transfer have been considered the most important mechanism of biological adaptation under selective pressure. Still, the impact of mobile genes in microbial ecology is far from being completely understood. Here we present the collection and characterisation of microbial consortia enriched from environments contaminated with emerging pollutants, such as non-steroidal anti-inflammatory drugs.

View Article and Find Full Text PDF

Vanadium-Dependent Haloperoxidase Gene Evolution in Brown Algae: Evidence for Horizontal Gene Transfer.

Int J Mol Sci

January 2025

Key Lab of Breeding Biotechnology and Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Compared with green plants, brown algae are characterized by their ability to accumulate iodine, contributing to their ecological adaptability in high-iodide coastal environments. Vanadium-dependent haloperoxidase (V-HPO) is the key enzyme for iodine synthesis. Despite its significance, the evolutionary origin of V-HPO genes remains underexplored.

View Article and Find Full Text PDF

-like Transposon Elements Inserted in Cause Male Sterility in Maize.

Int J Mol Sci

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.

Using male sterile (MS) lines instead of normal inbred maternal lines in hybrid seed production can increase the yield and quality with lower production costs. Therefore, developing a new MS germplasm is essential for maize hybrid seed production in the future. Here, we reported a male sterility gene , cloned from a newly found MS mutant .

View Article and Find Full Text PDF

The Difference a Year Can Make: How Antibiotic Resistance Mechanisms in Have Changed in Northwestern Transylvania.

Biomolecules

December 2024

Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania.

This study examines the prevalence and the mechanisms of antibiotic resistance in isolates collected from healthcare units in Northwestern Transylvania, Romania, between 2022 and 2023. Given the alarming rise in antibiotic resistance, the study screened 34 isolates for resistance to 10 antibiotics, 46 ARGs, and integrase genes using PCR analysis. The results reveal a concerning increase in multidrug-resistant (MDR) and extensively drug-resistant (XDR) isolates over the two-year period.

View Article and Find Full Text PDF

Background: Pseudomonas syringae pv. tagetis (Pstag) causes apical chlorosis on sunflower and various other plants of the Asteraceae family. Whole genome sequencing of Pstag strain EB037 and transposon-mutant derivatives, no longer capable of causing apical chlorosis, was conducted to improve understanding of the molecular basis of disease caused by this pathogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!